Solveeit Logo

Question

Physics Question on projectile motion

A body is projected at an angle of 6060^{\circ} with the horizontal such that the vertical component of its initial velocity is 40ms140\, ms^{-1}. The magnitude of velocity of the projectile at one quarter of its time of flight is nearly, (Acceleration due to gravity = 10ms210 \,ms^{-2})

A

3.54  ms13.54 \; ms^{-1}

B

35.40  ms135.40 \; ms^{-1}

C

30.54  ms130.54 \; ms^{-1}

D

34.5  ms134.5 \; ms^{-1}

Answer

30.54  ms130.54 \; ms^{-1}

Explanation

Solution

According to the question,

Verticle component of velocity,
uy=32u=40u_{y}=\frac{\sqrt{3}}{2} u=40
or u=803ms1u=\frac{80}{\sqrt{3}} ms ^{-1}
Time of flight, T=2usinθgT=\frac{2 u \sin \theta}{g}
=2(803)sin6010=\frac{2\left(\frac{80}{\sqrt{3}}\right) \sin 60^{\circ}}{10}
T=2×803×32×110\Rightarrow T =2 \times \frac{80}{\sqrt{3}} \times \frac{\sqrt{3}}{2} \times \frac{1}{10} T=8sec\Rightarrow T=8 sec
at time, t=T4=84=2sect=\frac{T}{4}=\frac{8}{4}=2 sec
vx=8032=403ms1v_{x}=\frac{\frac{80}{\sqrt{3}}}{2}=\frac{40}{\sqrt{3}} ms ^{-1}
at t=T4=2sect=\frac{T}{4}=2 sec,
From first equation of the motion,
vy=uygt=32(803)10×2v_{y}=u_{y}-g t=\frac{\sqrt{3}}{2}\left(\frac{80}{\sqrt{3}}\right)-10 \times 2
[uy=usin60]{\left[\because u_{y}=u \sin 60^{\circ}\right]}
=4010×2=20ms1=40-10 \times 2=20 ms ^{-1}
Hence, at t=T4t=\frac{T}{4}, magnitude of velocity of projectile,
v=vx2+vy2v=\sqrt{v_{x}^{2}+v_{y}^{2}}
=(403)2+(20)230.54ms1=\sqrt{\left(\frac{40}{\sqrt{3}}\right)^{2}+(20)^{2}} \approx 30.54 ms ^{-1}