Solveeit Logo

Question

Physics Question on laws of motion

A body is placed on rough (μ=133)\left(\mu=\frac{1}{3\sqrt{3}}\right) inclined plane. AA force FF is needed to stop this body to slide downward. AA force 2F2F is needed so that the body is just about to move upwards. Slope of inclined plane is

A

3030^{\circ}

B

4545^{\circ}

C

6060^{\circ}

D

2020^{\circ}

Answer

3030^{\circ}

Explanation

Solution

Let θ\theta be angle of inclination and mm be the mass of a body For motion down the plane. The equation of motion is F+fmgsinθ=0F + f - mgsin \theta=0 F+μNmgsinθ=0F+\mu N-mgsin \theta=0 F+μmgcosθmgsinθ=0(i)F+\mu mgcos\theta-mgsin\theta=0 \ldots\left(i\right) For motion up the plane The equation of motion is 2Ffmgsinθ=02F-f-mgsin\theta=0 2FμNmgsinθ=02F-\mu N-mgsin\theta=0 2Fμmgcosθmgsinθ=0(ii)2F-\mu mgcos\theta-mgsin\theta=0 \ldots\left(ii\right) Adding (i)\left(i\right) and (ii)\left(ii\right), we get 3F=2mgsinθ(iii)3F=2mgsin\theta \ldots\left(iii\right) Subtracting (i)\left(i\right) from (ii)\left(ii\right), we get F=2μmgcosθ(iv)F=2\mu mgcos\theta \ldots\left(iv\right) Dividing (iii)\left(iii\right) by (iv)\left(iv\right), we get 3FF=2mgsinθ2μmgcosθ\frac{3F}{F}=\frac{2\,mg\,sin\,\theta}{2\mu\,mg \,cos\,\theta} or tanθ=3μ tan\theta=3\mu =3×133=13=3\times\frac{1}{3\sqrt{3}}=\frac{1}{\sqrt{3}} θ=30\therefore\, \theta=30^{\circ}