Solveeit Logo

Question

Physics Question on work, energy and power

A body is moving unidirectionally under the influence of a source of constant power. Its displacement in time t\text t is proportional to

A

t12\text t^{\frac{1}{2}}

B

t\text t

C

t32\text t^{\frac{3}{2}}

D

t2\text t^2

Answer

t32\text t^{\frac{3}{2}}

Explanation

Solution

(iii) t32\text t^{\frac{3}{2}}
Power is given by the relation :
P = Fv
= mav\text {mav} = mvdvdt\text {mv}\frac{\text {dv}}{\text{dt}} = Constant (say, k)

vdv\text {vdv} = kmdt\frac{k}{m}dt
Integrating both sides:
v22\frac{\text v^2}{2} = kmt\frac{\text k}{\text m}\text t

v\text v = 2ktm\sqrt {\frac{2kt}{m}}
For displacement x of the body , we have :
v\text v = dxdt\frac{dx}{dt}= 2kmt12\sqrt{\frac{\text {2k}}{\text m}}\text t^{\frac{1}{2}}

dx\text {dx} = k’ t12dt\text {k' }t^{\frac{1}{2}}\text d\text t
Where k\text k' = 2k3\sqrt {\frac{\text {2k}}{3}} = New Constant
On integrating both sides, we get: x\text x = 23\frac{2}{3} kt32\text k'\text t^{\frac{3}{2}}
x\text x t32\propto \text t^{\frac{3}{2}}

Therefore, the correct option is (C) t32\text t^{\frac{3}{2}}