Solveeit Logo

Question

Physics Question on Power

A body is moved from rest along a straight line by a machine delivering constant power. The distance moved by the body in time tt is proportional to

A

t1/2t^{1/2}

B

t3/4 t^{3/4}

C

t3/2t^{3/2}

D

t2t^{2}

Answer

t3/2t^{3/2}

Explanation

Solution

Power P=dWdt=FdsdtP=\frac{d W}{d t}=\frac{F \cdot d s}{d t} ( dW=Fds\therefore d W=F \cdot d s ) =mdvdtdsdt=mvdvdt=m \frac{d v}{d t} \cdot \frac{d s}{d t}=\frac{m v d v}{d t} P\therefore P is constant, say KK then mvdvdt=K\frac{m v d v}{d t}=K or mvdv=Kdtm v d v=K d t Integrating, we get =mv22=Kt+c=\frac{m v^{2}}{2}=K t+c Using boundary condition c=oc=o So, mv22=Kt\frac{m v^{2}}{2}=K t or v=2Ktmv=\sqrt{2 \frac{K t}{m}} or dsdt=2Ktm\frac{d s}{d t}=\sqrt{\frac{2 K t}{m}} or ds=2Kmt1/2dtd s=\sqrt{\frac{2 K}{m}} \cdot t^{1 / 2} d t On integrating, we get s=2Km23t3/2s=\sqrt{\frac{2 K}{m}} \frac{2}{3} t^{3 / 2} st3/2\Rightarrow s \propto t^{3 / 2}