Solveeit Logo

Question

Question: A body is executing Simple Harmonic Motion. At a displacement x its potential energy is \(E_{1}\) an...

A body is executing Simple Harmonic Motion. At a displacement x its potential energy is E1E_{1} and at a displacement y its potential energy isE2E_{2}. The potential energy E at displacement (x+y)(x + y) is

A

E=E1E2\sqrt{E} = \sqrt{E_{1}} - \sqrt{E_{2}}

B

E=E1+E2\sqrt{E} = \sqrt{E_{1}} + \sqrt{E_{2}}

C

E=E1+E2E = E_{1} + E_{2}

D

E=E1+E2E = E_{1} + E_{2}

Answer

E=E1+E2\sqrt{E} = \sqrt{E_{1}} + \sqrt{E_{2}}

Explanation

Solution

E1=12Kx2x=2E1KE_{1} = \frac{1}{2}Kx^{2} \Rightarrow x = \sqrt{\frac{2E_{1}}{K}}, E2=12Ky2y=2E2KE_{2} = \frac{1}{2}Ky^{2} \Rightarrow y = \sqrt{\frac{2E_{2}}{K}}

and E=12K(x+y)2x+y=2EKE = \frac{1}{2}K(x + y)^{2} \Rightarrow x + y = \sqrt{\frac{2E}{K}}

2E1K+2E2K=2EKE1+E2=E\Rightarrow \sqrt{\frac{2E_{1}}{K}} + \sqrt{\frac{2E_{2}}{K}} = \sqrt{\frac{2E}{K}} \Rightarrow \sqrt{E_{1}} + \sqrt{E_{2}} = \sqrt{E}