Solveeit Logo

Question

Physics Question on work, energy and power

A body is dropped from a height of 4m4 \,m on a surface. If in collision 25%25\% of energy is lost, then the height upto which it will rise after collision is

A

3m3\,m

B

6m6\,m

C

9m9\,m

D

12m12\,m

Answer

3m3\,m

Explanation

Solution

Let υ\upsilon be the velocity of the body just before collision with the surface and υ2\upsilon_{2} be the velocity of the body after collision 12mυ12=mgh1(i)\therefore\, \frac{1}{2} m\upsilon_{1}^{2}=mgh_{1} \ldots\left(i\right) and 12mυ22=mgh2(ii)\frac{1}{2}m\upsilon_{2}^{2}=mgh_{2} \ldots\left(ii\right) Where h1h_{1} is the height from where the body is dropped and h2h_{2} is the height upto which body will rise after collision Dividing (ii)\left(ii\right) by (i)\left(i\right), we get υ22υ12=h2h1(iii)\frac{\upsilon_{2}^{2}}{\upsilon_{1}^{2}}=\frac{h_{2}}{h_{1}} \ldots\left(iii\right) According to the question, loss of energy =25%= 25\% 12mυ22=(75100)12mυ12\therefore\frac{1}{2}m\upsilon_{2}^{2}=\left(\frac{75}{100}\right)\frac{1}{2} m\upsilon_{1}^{2} υ22υ12=75100(iv)\frac{\upsilon_{2}^{2}}{\upsilon_{1}^{2}}=\frac{75}{100} \ldots\left(iv\right) From (iii)\left(iii\right) and (iv)\left(iv\right), we get h2h1=75100\frac{h_{2}}{h_{1}}=\frac{75}{100} h2=34×h1h_{2}=\frac{3}{4}\times h_{1} 34×4=3m\frac{3}{4}\times4=3\,m (h1=4m(\therefore h_{1}=4\,m (Given))