Solveeit Logo

Question

Question: A body falling freely under gravity passes two points 30 m apart in 1 s. From what point above the u...

A body falling freely under gravity passes two points 30 m apart in 1 s. From what point above the upper point it began to fall? (Take g = 9.8 m s-2)

A

32.1 m

B

16.0 m

C

8.6 m

D

4.0 m

Answer

32.1 m

Explanation

Solution

Suppose the body passes the upper point at second and lower point at (t + 1) s then

S2S1=12g(t+1)212gt2=12g(2t+1)S _ { 2 } - S _ { 1 } = \frac { 1 } { 2 } g ( t + 1 ) ^ { 2 } - \frac { 1 } { 2 } g t ^ { 2 } = \frac { 1 } { 2 } g ( 2 t + 1 )

Or 30m =12×9.8(2t+1)= \frac { 1 } { 2 } \times 9.8 ( 2 t + 1 )

t=2.56 s\therefore \mathrm { t } = 2.56 \mathrm {~s}

S1=12gt2=12×9.8×(2.56)2=32.1 m\mathrm { S } _ { 1 } = \frac { 1 } { 2 } \mathrm { gt } ^ { 2 } = \frac { 1 } { 2 } \times 9.8 \times ( 2.56 ) ^ { 2 } = 32.1 \mathrm {~m}.