Solveeit Logo

Question

Physics Question on Oscillations

A body executes simple harmonic motion under the action of force F1F_{1} with a time period 45s\frac{4}{5} s. If the force is changed to F2F_{2} it executes simple harmonic motion with time period 35s\frac{3}{5} s. If both forces F1F_{1} and F2F_{2} act simultaneously in the same direction on the body, its time period will be

A

1225s\frac{12}{25}\,s

B

2425s\frac{24}{25}\,s

C

3524s\frac{35}{24}\,s

D

1512s\frac{15}{12}\,s

Answer

1225s\frac{12}{25}\,s

Explanation

Solution

Under the influence of one force F1=mω12yF_{1}=m \omega_{1}^{2} y and under the action of another force, F2=mω22yF_{2}=m \omega_{2}^{2} y Under the action of both the forces F=F1+F2F=F_{1}+F_{2} mω2y=mω12y+mω22y\Rightarrow m \omega^{2} y=m \omega_{1}^{2} y+m \omega_{2}^{2} y ω2=ω12+ω22\Rightarrow \omega^{2} =\omega_{1}^{2}+\omega_{2}^{2} [2πT]2=[2πT1]2+[2πT2]2\Rightarrow \left[\frac{2 \pi}{T}\right]^{2} =\left[\frac{2 \pi}{T_{1}}\right]^{2}+\left[\frac{2 \pi}{T_{2}}\right]^{2} T=T12×T22T12+T22\Rightarrow T=\sqrt{\frac{T_{1}^{2} \times T_{2}^{2}}{T_{1}^{2}+T_{2}^{2}}} =(45)2(35)2(45)2+(35)2=\sqrt{\frac{\left(\frac{4}{5}\right)^{2}\left(\frac{3}{5}\right)^{2}}{\left(\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}}} =1225s=\frac{12}{25} s