Solveeit Logo

Question

Question: A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2 s. Find accele...

A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2 s. Find acceleration and velocity of the body when the displacement is (a) 5 cm (b) 3 cm (c) 0 cm

Explanation

Solution

The simple harmonic motion is defined as a special type of periodic motion where the restoring force on the moving object is directly proportional, at every instant, to the displacement of the body.
Restoring force, F –
Fx F=kx  F \propto - x \\\ F = - kx \\\
k = constant.

Complete step by step answer:
Newton’s second law states the definition of force as –
F=maF = ma
Acceleration is obtained by differentiating the displacement function twice.
We know that, a=d2xdt2a = \dfrac{{{d^2}x}}{{d{t^2}}}
Substituting in the equation of harmonic function –
F=kx m(d2xdt2)=kx d2xdt2=kmx  F = - kx \\\ \Rightarrow m\left( {\dfrac{{{d^2}x}}{{d{t^2}}}} \right) = - kx \\\ \Rightarrow \dfrac{{{d^2}x}}{{d{t^2}}} = - \dfrac{k}{m}x \\\
On solving the differential equation, we have the solution –
x(t)=c1cos(ωt)+c2sin(ωt)x(t) = {c_1}\cos \left( {\omega t} \right) + {c_2}\sin \left( {\omega t} \right) where ω=km\omega = \sqrt {\dfrac{k}{m}}
Applying the initial condition: At t=0,x(t)=0t = 0,x(t) = 0
x(t)=c1cos(0)+c2sin(0) 0=c1+0 c1=0 \Rightarrow x(t) = {c_1}\cos \left( 0 \right) + {c_2}\sin \left( 0 \right) \\\ \Rightarrow 0 = {c_1} + 0 \\\ \Rightarrow {c_1} = 0
Therefore,
x(t)=Asinωtx(t) = A\sin \omega t with c2=A{c_2} = A, called the amplitude which means the maximum displacement about the mean position
On differentiating the equation once, we get the equation for velocity,
V=dxdt=ddx(Asinωt) V=Aωcosωt V = \dfrac{{dx}}{{dt}} = \dfrac{d}{{dx}}\left( {A\sin \omega t} \right) \\\ \Rightarrow V = A\omega \cos \omega t
In trigonometry,
sin2θ+cos2θ=1 cosθ=1sin2θ \Rightarrow {\sin ^2}\theta + {\cos ^2}\theta = 1 \\\ \Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta }
Applying this identity in the above equation, we have –
V=Aωcosωt V=Aω1sin2ωt V = A\omega \cos \omega t \\\ \Rightarrow V = A\omega \sqrt {1 - {{\sin }^2}\omega t}
Taking the equation inside the square root,
V=A2ω2A2ω2sin2ωt V=A2ω2ω2x2x=Asinωt&x2=A2sin2ωt V=ω2(A2x2) V=ω(A2x2) V = \sqrt {{A^2}{\omega ^2} - {A^2}{\omega ^2}{{\sin }^2}\omega t} \\\ \Rightarrow V = \sqrt {{A^2}{\omega ^2} - {\omega ^2}{x^2}} \because x = A\sin \omega t\& {x^2} = {A^2}{\sin ^2}\omega t \\\ \Rightarrow V = \sqrt {{\omega ^2}\left( {{A^2} - {x^2}} \right)} \\\ \Rightarrow V = \omega \sqrt {\left( {{A^2} - {x^2}} \right)}
On differentiating the equation again, we get the equation for acceleration,
a=d2xdt2=ddt(dxdt)=ddt(V)a = \dfrac{{{d^2}x}}{{d{t^2}}} = \dfrac{d}{{dt}}\left( {\dfrac{{dx}}{{dt}}} \right) = \dfrac{d}{{dt}}\left( V \right)
V=AωcosωtV = A\omega \cos \omega t
Substituting and differentiating, we get –

a=dVdt=ddt(Aωcosωt) a=Aω2sinωt a=ω2xx=Asinωt a = \dfrac{{dV}}{{dt}} = \dfrac{d}{{dt}}\left( {A\omega \cos \omega t} \right) \\\ \Rightarrow a = - A{\omega ^2}\sin \omega t \\\ \Rightarrow a = - {\omega ^2}x\because x = A\sin \omega t

In this problem,
Amplitude, A=5cm=0.05mA = 5cm = 0.05m
Time period, T=0.2sT = 0.2s
The angular velocity, ω\omega is equal to the number of radians covered per unit time. Thus,
ω=2πT Here, ω=2π0.2=10π \Rightarrow \omega = \dfrac{{2\pi }}{T} \\\ Here, \\\ \Rightarrow \omega = \dfrac{{2\pi }}{{0.2}} = 10\pi
Now, let us consider each case for the displacements –
Case 1: When displacement is 5 cm
x(t)=5cmx(t) = 5cm
Velocity, V=dxdt=ωA2x2V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}}
Substituting,
V=ωA2x2 V=10π0.0520.052 V=10π(0)=0ms1  \Rightarrow V = \omega \sqrt {{A^2} - {x^2}} \\\ \Rightarrow V = 10\pi \sqrt {{{0.05}^2} - {{0.05}^2}} \\\ \Rightarrow V = 10\pi (0) = 0m{s^{ - 1}} \\\
Acceleration, A=d2xdt2=ω2xA = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x
Substituting,
A=ω2x A=(10π)2×0.05 A=100×(3.14)2×0.05=49.298ms2  \Rightarrow A = - {\omega ^2}x \\\ \Rightarrow A = - {\left( {10\pi } \right)^2} \times 0.05 \\\ \Rightarrow A = - 100 \times {\left( {3.14} \right)^2} \times 0.05 = - 49.298m{s^{ - 2}} \\\
Thus,
Velocity,V=0ms1 Acceleration,a=49.298ms2  Velocity,V = 0m{s^{ - 1}} \\\ Acceleration,a = - 49.298m{s^{ - 2}} \\\

Case 2: When displacement is 3 cm
x(t)=3cmx(t) = 3cm
Velocity, V=dxdt=ωA2x2V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}}
Substituting,
V=ωA2x2 V=10π0.0520.032 V=10π0.00250.0009 V=10π0.0016 V=10π×0.04=1.256ms1  V = \omega \sqrt {{A^2} - {x^2}} \\\ \Rightarrow V = 10\pi \sqrt {{{0.05}^2} - {{0.03}^2}} \\\ \Rightarrow V = 10\pi \sqrt {0.0025 - 0.0009} \\\ \Rightarrow V = 10\pi \sqrt {0.0016} \\\ \Rightarrow V = 10\pi \times 0.04 = 1.256m{s^{ - 1}} \\\
Acceleration, A=d2xdt2=ω2xA = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x
Substituting,
A=ω2x A=(10π)2×0.03 A=100×(3.14)2×0.03=29.578ms2  A = - {\omega ^2}x \\\ \Rightarrow A = - {\left( {10\pi } \right)^2} \times 0.03 \\\ \Rightarrow A = - 100 \times {\left( {3.14} \right)^2} \times 0.03 = - 29.578m{s^{ - 2}} \\\
Thus,
Velocity,V=1.256ms1 Acceleration,a=29.578ms2  Velocity,V = 1.256m{s^{ - 1}} \\\ Acceleration,a = - 29.578m{s^{ - 2}} \\\
Case 3: When displacement is 0 cm
x(t)=0cmx(t) = 0cm
Velocity, V=dxdt=ωA2x2V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}}
Substituting,
V=ωA2x2 V=10π0.0520 V=10π0.0025 V=10π×0.05=1.57ms1  V = \omega \sqrt {{A^2} - {x^2}} \\\ \Rightarrow V = 10\pi \sqrt {{{0.05}^2} - 0} \\\ \Rightarrow V = 10\pi \sqrt {0.0025} \\\ \Rightarrow V = 10\pi \times 0.05 = 1.57m{s^{ - 1}} \\\
Acceleration, A=d2xdt2=ω2xA = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x
Substituting,
A=ω2x A=(10π)2×0 A=0ms2  A = - {\omega ^2}x \\\ \Rightarrow A = - {\left( {10\pi } \right)^2} \times 0 \\\ \Rightarrow A = 0m{s^{ - 2}} \\\
Thus,
Velocity,V=1.57ms1 Acceleration,a=0ms2  Velocity,V = 1.57m{s^{ - 1}} \\\ Acceleration,a = 0m{s^{ - 2}} \\\

Note: In actual, the equation for simple harmonic motion is –
x(t)=Asin(ωt+ϕ)x(t) = A\sin \left( {\omega t + \phi } \right) where ϕ\phi is called the initial phase angle, which represents the angle at which we are starting the vibration.
In general cases, there is a common assumption that the initial phase angle is 0.
Hence, in the question, it is directly taken as:
x(t)=Asin(ωt+0)=Asinωtx(t) = A\sin \left( {\omega t + 0} \right) = A\sin \omega t