Solveeit Logo

Question

Physics Question on thermal properties of matter

A body cools from a temperature 3T3T to 2T2T in 10minutes10\, minutes. The room temperature is TT. Assume that Newton�s law of cooling is applicable. The temperature of the body at the end of next 10minutes10\,minutes will be -

A

74T\frac{7}{4} T

B

32T\frac{3}{2} T

C

43T\frac{4}{3} T

D

TT

Answer

32T\frac{3}{2} T

Explanation

Solution

3T>[t1=10  min]2T>[t2=10min]Tf{3T ->[t_1 = 10 \; min] 2T ->[t_2 = 10 min] T_f}
T0=TT_{0} =T
(3T2T10)=c1(3T+2T2T)\left(\frac{3T - 2T}{10}\right) = c_{1} \left(\frac{3T + 2T}{2} - T\right) ...(i)
(2TTf10)=c1(2T+Tf2T)\left(\frac{2T - T_{f}}{10}\right) =c_{1}\left(\frac{2T + T_{f}}{2} - T\right) ....(ii)
E(i)E(ii)T102TTf10=5T2T2Tf2\frac{E\left(i\right)}{E\left(ii\right)} \Rightarrow \frac{\frac{T}{10}}{\frac{2T -T_{f}}{10}} = \frac{\frac{5T-2T}{2}}{\frac{T_{f}}{2}}
T2TTf=3TTf\frac{T}{2T - T_{f}} = \frac{3T}{T_{f}}
Tf=6T3TfT_{f} = 6T - 3T_{f}
4Tf=6T4T_{f} = 6T
Tf=32TT_{f} = \frac{3}{2} T