Solveeit Logo

Question

Physics Question on Motion in a straight line

A body AA is thrown up vertically from the ground with a velocity v0v_{0} and another body BB is simultaneously dropped from a height HH. They meet at a height H2\frac{H}{2} if v0v_{0} is equal to

A

2gH\sqrt{2gH}

B

gH\sqrt{gH}

C

12gH\frac{1}{2}\sqrt{gH}

D

2gH\frac{2g}{H}

Answer

gH\sqrt{gH}

Explanation

Solution

Suppose the two bodies AA and BB meet at time tt,
at a height H2\frac{H}{2} from the ground.
For body B,u=0,h=H2B,\, u=0,\, h=\frac{H}{2}
h=ut+12gt2h=u t+\frac{1}{2} g t^{2}
H2=12gt2\frac{H}{2}=\frac{1}{2} g t^{2} ...(i)
For body A,d=v0,h=H2A,\, d=v_{0},\, h=\frac{H}{2}
h=ut12gt2h =u t-\frac{1}{2} g t^{2}
H2=v0t12gt2\frac{H}{2} =v_{0} t-\frac{1}{2} g t^{2} ...(ii)
From Eqs. (i) and (ii)
v0t12gt2=12gt2v_{0} t-\frac{1}{2} g t^{2}=\frac{1}{2} g t^{2}
or v0t=gt2v_{0} t=g t^{2}
or t=v0gt=\frac{v_{0}}{g}
Substituting the value of tt in E (i), we get
H2=12gt2\frac{H}{2} =\frac{1}{2} g t^{2}
H=g×(v0g)2H =g \times\left(\frac{v_{0}}{g}\right)^{2}
v0=gHv_{0} =\sqrt{g H}