Solveeit Logo

Question

Physics Question on work, energy and power

A bob of mass mm is suspended by a light string of length LL . It is imparted a horizontal velocity v0v_0 at the lowest point A such that it completes a circle in the vertical plane. Match Column I with Column II.

A

ApA - p , BqB - q , CsC - s , DrD - r

B

AqA - q , BrB - r , CpC - p , DsD - s

C

ArA - r , BsB - s , CqC - q , DpD - p

D

AsA - s , BpB - p , CrC - r , DqD - q

Answer

ArA - r , BsB - s , CqC - q , DpD - p

Explanation

Solution

There are two external forces on the bob : gravity (mg)(mg) and tension (T)(T) in the string. The tension does no work as displacement is always perpendicular to the string. Total mechanical energy (E)(E) of the system is conserved. If we take potential energy of the system to be zero at the lowest point AA , then At AA , E=12mv02(i)E = \frac{1}{2}mv^{2}_{0} \quad\cdots\left(i\right) From Newtons second law TAmg=mv02L(ii)T_{A} - mg = \frac{mv^{2}_{0}}{L}\quad\cdots\left(ii\right) where TAT_{A} is the tension in the string at AA . At the highest point CC , to complete the circle tension in string will be minimum (zero). At CC , E=12mvC2+mg(2L)(iii)E = \frac{1}{2}mv^{2}_{C}+mg\left(2L\right)\quad\cdots\left(iii\right) From Newtons second law mg=mvC2L(iv)mg = \frac{mv_{C}^{2}}{L}\quad\quad\left(iv\right) From (iv),vC=gL\left(iv\right), v_{C} =\sqrt{gL} ; CqC-q From (iii)\left(iii\right) , E=12m(gL)+2mgL=52mgL(v)E = \frac{1}{2}m\left(gL\right)+2mgL= \frac{5}{2}mgL \quad\left(v\right) Using (i)\left(i\right) , 12mv02=52mgL\frac{1}{2}mv^{2}_{0} = \frac{5}{2}mgL , v0=5gLv_{0} = \sqrt{5\,gL} ; Ar(vi)\therefore A-r\quad\cdots\left(vi\right) At BB , E=12mvB2+mg(L)E =\frac{1}{2}mv^{2}_{B}+mg\left(L\right) or 12mvB2=Emg(L)\frac{1}{2}mv^{2}_{B} = E-mg\left(L\right) 52mgLmgL\frac{5}{2}mgL-mgL\quad (Using (v)\left(v\right) ) 12mvB2=32mgL\frac{1}{2} mv^{2}_{B} = \frac{3}{2} mgL vB=3gL\therefore v_{B} = \sqrt{3\,gL} ; Bs\therefore B-s The ratio of kinetic energies at BB and CC is KBKC=12mvB212mvC2\therefore \frac{K_{B}}{K_{C}} = \frac{\frac{1}{2}mv^{2}_{B}}{\frac{1}{2}mv^{2}_{C}} =3gLgL=31= \frac{3gL}{gL} = \frac{3}{1} ; Dp\therefore D-p