Solveeit Logo

Question

Physics Question on Circular motion

A bob of mass mm is suspended by a light string of length LL. It is imparted a minimum horizontal velocity at the lowest point AA such that it just completes a half circle, reaching the topmost position BB. The ratio of kinetic energies (K.E.)A(K.E.)B\frac{(\text{K.E.})_A}{(\text{K.E.})_B} is:
bob

A

3 : 2

B

5 : 1

C

2 : 5

D

1 : 5

Answer

5 : 1

Explanation

Solution

To solve this problem, we apply energy conservation between points AA and BB.

Step 1: Energy conservation between AA and BB:

12mVL2=12mVB2+mg(2L)\frac{1}{2} m V_L^2 = \frac{1}{2} m V_B^2 + mg(2L)

where:
- VLV_L is the velocity at point AA (the lowest point),
- VBV_B is the velocity at point BB (the highest point).

Rearranging the equation:

VL2=VB2+4gLV_L^2 = V_B^2 + 4gL

Step 2: Calculate VLV_L (Minimum Velocity at AA):
Since the bob must just complete the circular path, the minimum velocity at AA must be such that:

VL=5gLV_L = \sqrt{5gL}

Step 3: Calculate VBV_B:
Applying energy conservation:

12mVL2=12mVB2+mg(2L)\frac{1}{2} m V_L^2 = \frac{1}{2} m V_B^2 + mg(2L)

Substitute VL=5gLV_L = \sqrt{5gL}:

12m(5gL)=12mVB2+2mgL\frac{1}{2} m (5gL) = \frac{1}{2} m V_B^2 + 2mgL

Simplifying:

52mgL=12mVB2+2mgL\frac{5}{2} mgL = \frac{1}{2} m V_B^2 + 2mgL

12mVB2=52mgL2mgL\frac{1}{2} m V_B^2 = \frac{5}{2} mgL - 2mgL

VB2=gLV_B^2 = gL

VB=gLV_B = \sqrt{gL}

Step 4: Calculate the ratio of kinetic energies:

((K.E.)A(K.E.)B)=12mVL212mVB2=VL2VB2=5gLgL=5\left(\frac{\text{(K.E.)}_A}{\text{(K.E.)}_B}\right) = \frac{\frac{1}{2} m V_L^2}{\frac{1}{2} m V_B^2} = \frac{V_L^2}{V_B^2} = \frac{5gL}{gL} = 5

Thus, the ratio of kinetic energies ((K.E.)A(K.E.)B)\left(\frac{\text{(K.E.)}_A}{\text{(K.E.)}_B}\right) is 5 : 1.

The Correct Answer is: 5 : 1