Solveeit Logo

Question

Physics Question on Motion in a plane

A boat which has a speed of 5kmh15 \, km \, h^{- 1} in still water crosses a river of width 1km1 \, km along the shortest possible path in 1515 minutes. The velocity of the river water in kmh1km \, h^{- 1} is

A

1kmh11kmh^{- 1}

B

3kmh13 \, km \, h^{- 1}

C

4kmh14 \, km \, h^{- 1}

D

41kmh1\sqrt{41} km h^{-1}

Answer

3kmh13 \, km \, h^{- 1}

Explanation

Solution

Vertical displacement = 1km1km t=1560=14ht=\frac{15}{60}=\frac{1}{4}h Vbcosθ=1(14)=4kmh1\therefore \, \, \, V_{b}cos\theta =\frac{ \, \, 1 \, \, }{\left(\right. \frac{1}{4} \left.\right)}=4kmh^{- 1} cosθ=4Vb=45 sinθ=35\Rightarrow cos\theta =\frac{4}{V_{b}}=\frac{4}{5} \\\ \Rightarrow sin\theta =\frac{3}{5} By velocity triangle ABC, sinθ=VrVb sin \theta = \frac{V_{r}}{V_{b}} VrVb=35 Vr5=35 Vr=3kmh1\therefore \, \, \, \frac{V_{r}}{V_{b}}=\frac{3}{5} \\\ \Rightarrow \frac{V_{r}}{5}=\frac{3}{5} \\\ \Rightarrow V_{r}=3kmh^{- 1}