Solveeit Logo

Question

Question: A block of mass of \( 10kg \) rests on a horizontal table. The coefficient of friction between the b...

A block of mass of 10kg10kg rests on a horizontal table. The coefficient of friction between the black and the table is 0050\cdot 05 . When hit by a bullet of mass 50g50g moving with speed u, that gets embedded in it, the block moves and comes to rest after moving a distance of 2m2m on the table. If a freely falling object were to acquire speed v10\dfrac{v}{10} after being dropped from height h, then neglecting energy losses and taking g= 10 m/s2g=\text{ }10\text{ m/}{{\text{s}}^{2}} , the value of HH is close to:
A) 004 km0\cdot 04\text{ km}
B) 005 km0\cdot 05\text{ }km
C) 002 km0\cdot 02\text{ }km
D) 003 km0\cdot 03\text{ }km

Explanation

Solution

As the bullet is embedded in the block, the kinetic energy of the combined block and bullet system can be calculated by using the formula
kE = 12 mv2k\cdot E\text{ = }\dfrac{1}{2}\text{ m}{{\text{v}}^{2}}
The value of vv here is calculated by applying the principle of conservation of linear momentum.
Next, as the system stops at a distance, so the kinetic energy loss due to friction be made equal to the work done by using the initial condition given in the question.From here, the value of hh can be calculated.

Complete step-by-step solution
From conservation of linear momentum, we know that:
m1 v = (m2+m1) v{{m}_{1}}\text{ v = }\left( {{m}_{2}}+{{m}_{1}} \right)\text{ v}
here m1= mass of bullet m2= mass of black \begin{aligned} & m1=\text{ mass of bullet} \\\ & m2\text{= mass of black} \\\ \end{aligned}
kinetic energy of combined black and bullet system is given by:
E = 12 (m1+m2) (v)2E\text{ = }\dfrac{1}{2}\text{ }\left( {{m}_{1}}+{{m}_{2}} \right)\text{ }{{\left( v \right)}^{2}}
New, from equation 1 , we get
v = m1v(m1+m2)\text{v = }\dfrac{{{m}_{1}}v}{\left( {{m}_{1}}+{{m}_{2}} \right)}
Putting this value in equation 2, we get:
E = 12 (m1+m2) m12v2(m1+m2)2 \text{E = }\dfrac{1}{2}\text{ }\left( {{m}_{1}}+{{m}_{2}} \right)\text{ }\dfrac{{{m}_{1}}^{2}{{v}^{2}}}{{{\left( {{m}_{1}}+{{m}_{2}} \right)}^{2}}\text{ }}
E = (m1v)22(m1+m2)E\text{ = }\dfrac{{{\left( {{m}_{1}}v \right)}^{2}}}{2\left( {{m}_{1}}+{{m}_{2}} \right)}
As the system stops at a distance on the table, so
KEK\cdot E loss due to friction = work done
So, H(m1+m2) g& (m1v)22(m1+m2)H\left( {{m}_{1}}+{{m}_{2}} \right)\text{ }{{g}^{\And }}\text{ }\dfrac{{{\left( {{m}_{1}}v \right)}^{2}}}{2\left( {{m}_{1}}+{{m}_{2}} \right)}
As the freely falling object acquires speed (v10)\left( \dfrac{v}{10} \right) when it falls a distance h
Therefore, v2u2=2gh{{v}^{2}}-{{u}^{2}}=2gh
u=0, v = v10u=0,\text{ v = }\dfrac{v}{10}
So, (v10)2=2gh{{\left( \dfrac{v}{10} \right)}^{2}}=2gh
v2=200gh{{v}^{2}}=200gh
Putting this value in equation 4, we get
H(m1+m2)gs=(m1)2(200gh)2(m1+m2)H\left( {{m}_{1}}+{{m}_{2}} \right)gs=\dfrac{{{\left( {{m}_{1}} \right)}^{2}}\left( 200gh \right)}{2\left( {{m}_{1}}+{{m}_{2}} \right)}
H=2mg&(m1+m2)2200g m12H=\dfrac{2m{{g}^{\And }}{{\left( {{m}_{1}}+{{m}_{2}} \right)}^{2}}}{200g\text{ m}{{\text{1}}^{2}}}
= 2×005×(105)2100×(05)2\dfrac{2\times 0\cdot 05\times {{\left( 10\cdot 5 \right)}^{2}}}{100\times {{\left( 0\cdot 5 \right)}^{2}}}
= 404m40\cdot 4m
H=004kmH=0\cdot 04km .

Note
Consider that a body is lying on a Horizontal surface. If R is the normal reaction and F is the limiting static friction, then
FrF\propto r
F=μrF=\mu r
On a horizontal surface, μk\mu k is the coefficient of kinetic friction between the two surfaces in contact. The force of friction between the block and horizontal surface is given by:
F=μrF=\mu r R
= μr mg\mu r\text{ }mg
To move the block without acceleration, the force required will be just equal to the force of friction
P=F=μrmgP=F=\mu rmg
If ss is the distance moved, then work done is given by
W=P×SW=P\times S
w=μk mg sw=\mu k\text{ mg }s .