Solveeit Logo

Question

Question: A block of mass m rigidly attached with a spring of stiffness k is compressed through a distance A. ...

A block of mass m rigidly attached with a spring of stiffness k is compressed through a distance A. If the block is released, the period of oscillation of the block for a complete cycle is equal to

A

B

π2mk\frac { \pi } { \sqrt { 2 } } \sqrt { \frac { \mathrm { m } } { \mathrm { k } } }

C

2π3mk\frac { 2 \pi } { 3 } \sqrt { \frac { \mathrm { m } } { \mathrm { k } } }

D

None of these.

Answer

Explanation

Solution

The period of motion from A to is equal to quarter of the time period T of oscillation of m-k system.

\Rightarrow tAO=T4=14[2πmk]=π2mk\mathrm { t } _ { \mathrm { AO } } = \frac { \mathrm { T } } { 4 } = \frac { 1 } { 4 } \left[ 2 \pi \sqrt { \frac { \mathrm { m } } { \mathrm { k } } } \right] = \frac { \pi } { 2 } \sqrt { \frac { \mathrm { m } } { \mathrm { k } } }

Since the motion is simple harmonic

OB = OA sin where is the time of motion from O to B.

\Rightarrow tOB=T2πsin1 A/2 A=T2π(π6)=T12=2π12 mk=π6 mk\mathrm { t } _ { \mathrm { OB } } = \frac { \mathrm { T } } { 2 \pi } \sin ^ { - 1 } \frac { \mathrm {~A} / 2 } { \mathrm {~A} } = \frac { \mathrm { T } } { 2 \pi } \left( \frac { \pi } { 6 } \right) = \frac { \mathrm { T } } { 12 } = \frac { 2 \pi } { 12 } \sqrt { \frac { \mathrm {~m} } { \mathrm { k } } } = \frac { \pi } { 6 } \sqrt { \frac { \mathrm {~m} } { \mathrm { k } } }

\therefore The total time of motion for a complete cycle = t = 2 (tAO+tOB)\left( \mathrm { t } _ { \mathrm { AO } } + \mathrm { t } _ { \mathrm { OB } } \right)

\Rightarrow t=2[π2mk+π6mk]=4π3mk\mathrm { t } = 2 \left[ \frac { \pi } { 2 } \sqrt { \frac { \mathrm { m } } { \mathrm { k } } } + \frac { \pi } { 6 } \sqrt { \frac { \mathrm { m } } { \mathrm { k } } } \right] = \frac { 4 \pi } { 3 } \sqrt { \frac { \mathrm { m } } { \mathrm { k } } }

Hence correct choice is : (1)