Solveeit Logo

Question

Question: A block of mass m lying on a horizontal surface (coefficient of static friction= \({\mu _s}\)) is to...

A block of mass m lying on a horizontal surface (coefficient of static friction= μs{\mu _s}) is to be brought into motion by a pulling Force F. At what angle θ\theta with the horizontal should the force F be applied so that its magnitude is minimum? Also find its magnitude.

Explanation

Solution

For problems like these we have to first draw the free body diagram, this will help us to better analyze all the forces that are acting on the body. Then once we have drawn the free body diagram if we equate the forces according to vertical and horizontal directions, we can easily calculate the desired values.

Complete answer:
A coefficient of friction is the ratio of the normal reaction between the two bodies involved in the friction.
Let us first draw the free body diagram of the whole scenario.

Now, from the free body diagram for the vertical components, we can write,
\Rightarrow N+Fsinθ=mgN + F\sin \theta = mg
Thus, we have
\Rightarrow N=mgFsinθN = mg - F\sin \theta
Similarly, for the horizontal components we have,
\Rightarrow Fcosθ=μsNF\cos \theta = {\mu _s}N
Now, putting the value of N we have,
\Rightarrow Fcosθ=μs(mgFsinθ)F\cos \theta = {\mu _s}\left( {mg - F\sin \theta } \right)
Simplifying we get,
\Rightarrow Fcosθ+μsFsinθ=μsmgF\cos \theta + {\mu _s}F\sin \theta = {\mu _s}mg
To calculate F we can write,
\Rightarrow F(θ)=μsmgcosθ+μssinθF\left( \theta \right) = \dfrac{{{\mu _s}mg}}{{\cos \theta + {\mu _s}\sin \theta }}
Again, for the free body diagram we have,
\Rightarrow dFdθ=0\dfrac{{dF}}{{d\theta }} = 0
Thus, we can equate the previous equation as,
\Rightarrow F(θ)=μsmgcosθ+μssinθF\left( \theta \right) = \dfrac{{{\mu _s}mg}}{{\cos \theta + {\mu _s}\sin \theta }}
Differentiating we have,
\Rightarrow dFdθ=ddθ(μsmgcosθ+μssinθ)\dfrac{{dF}}{{d\theta }} = \dfrac{d}{{d\theta }}\left( {\dfrac{{{\mu _s}mg}}{{\cos \theta + {\mu _s}\sin \theta }}} \right)
Putting the values, we get
\Rightarrow 0=ddθ(μsmgcosθ+μssinθ)0 = \dfrac{d}{{d\theta }}\left( {\dfrac{{{\mu _s}mg}}{{\cos \theta + {\mu _s}\sin \theta }}} \right)
Further simplifying we get,
\Rightarrow μs=tanθ{\mu _s} = \tan \theta
Thus, we have from equating the above equation,
\Rightarrow θ=tan1(μs)\theta = {\tan ^{ - 1}}\left( {{\mu _s}} \right)
Thus, the minimum value of the force will be at angle θ=tan1(μs)\theta = {\tan ^{ - 1}}\left( {{\mu _s}} \right).
Again, we have
\Rightarrow F=μsmgcosθ+μssinθF = \dfrac{{{\mu _s}mg}}{{\cos \theta + {\mu _s}\sin \theta }}
Dividing the denominator and numerator of the right-hand side with cosθ\cos \theta , we have
\Rightarrow F=μsmgcosθcosθ+μssinθcosθF = \dfrac{{\dfrac{{{\mu _s}mg}}{{\cos \theta }}}}{{\dfrac{{\cos \theta + {\mu _s}\sin \theta }}{{\cos \theta }}}}
This gives us,
\Rightarrow F=μsmgcosθ1+μstanθF = \dfrac{{\dfrac{{{\mu _s}mg}}{{\cos \theta }}}}{{1 + {\mu _s}\tan \theta }}
Substituting μs=tanθ{\mu _s} = \tan \theta we get,
\Rightarrow F=μsmgcosθ1+μs2F = \dfrac{{\dfrac{{{\mu _s}mg}}{{\cos \theta }}}}{{1 + {\mu _s}^2}}
Again, using the value of θ\theta and using Pythagoras theorem we have,
\Rightarrow cosθ=(1+μs2)12\cos \theta = {\left( {1 + {\mu _s}^2} \right)^{ - \dfrac{1}{2}}}
Thus, putting this value, we have,
\Rightarrow F=μsmg1+μs2(1+μs2)12F = \dfrac{{{\mu _s}mg}}{{1 + {\mu _s}^2}}{\left( {1 + {\mu _s}^2} \right)^{\dfrac{1}{2}}}
Further simplification gives us,
\Rightarrow F=μsmg(1+μs2)12F = \dfrac{{{\mu _s}mg}}{{{{\left( {1 + {\mu _s}^2} \right)}^{\dfrac{1}{2}}}}}

Thus, the magnitude of the force that is to be applied is μsmg(1+μs2)12\dfrac{{{\mu _s}mg}}{{{{\left( {1 + {\mu _s}^2} \right)}^{\dfrac{1}{2}}}}}.

Note:
The problems sometimes need further simplification which can be done with the help of basic theorems like the Pythagoras theorem we used in this particular problem to get the value of cosθ\cos \theta .