Solveeit Logo

Question

Question: A block of mass m is given a velocity v. Find to what height the block will rise after breaking off ...

A block of mass m is given a velocity v. Find to what height the block will rise after breaking off from mass M. Assume all surface to be smooth.

A

mv22g(m+M)\frac { m v ^ { 2 } } { 2 g ( m + M ) }

B

mv22gM\frac { \mathrm { mv } ^ { 2 } } { 2 \mathrm { gM } }

C

v22g\frac { v ^ { 2 } } { 2 g }

D

Mv22g(m+M)\frac { M v ^ { 2 } } { 2 g ( m + M ) }

Answer

Mv22g(m+M)\frac { M v ^ { 2 } } { 2 g ( m + M ) }

Explanation

Solution

mv = (m + M)vx or vx = mvm+M\frac { \mathrm { mv } } { \mathrm { m } + \mathrm { M } }

Energy conservation gives

12mv2=12( m+M)vx2+12mvy2+mgh1\frac { 1 } { 2 } \mathrm { mv } ^ { 2 } = \frac { 1 } { 2 } ( \mathrm {~m} + \mathrm { M } ) \mathrm { v } _ { \mathrm { x } } ^ { 2 } + \frac { 1 } { 2 } \mathrm { mv } _ { \mathrm { y } } ^ { \prime 2 } + \mathrm { mgh } _ { 1 }

or 12m2=12(m+M)(mvM+m)2+12my2+myh\frac { 1 } { 2 } m ^ { 2 } = \frac { 1 } { 2 } ( m + M ) \left( \frac { m v } { M + m } \right) ^ { 2 } + \frac { 1 } { 2 } m _ { y } ^ { \prime 2 } + m _ { y h }

or v'y2 = v2 - mv2 m+M\frac { \mathrm { mv } ^ { 2 } } { \mathrm {~m} + \mathrm { M } } - 2gh

If h2 is the height from break off point then h2 = vy22 g\frac { \mathrm { v } _ { \mathrm { y } } ^ { \prime 2 } } { 2 \mathrm {~g} }

and h = h1 + h2

Thus h = h1 + h2 = v22gmv22g(m+M)\frac { v ^ { 2 } } { 2 g } - \frac { m v ^ { 2 } } { 2 g ( m + M ) }