Solveeit Logo

Question

Physics Question on simple harmonic motion

A block of mass m is conducted to a light spring of force constant k. The system is placed inside a damping medium of damping constant b. The instantaneous values of displacement, acceleration and energy of the block are x, a and E respectively. The initial amplitude of oscillation is A and ω' is the angular frequency of oscillations. The incorrect expression related to the damped oscillations is

A

ω=kmb24m2\omega'=\sqrt{\frac{k}{m}-\frac{b^2}{4m^2}}

B

E=12kA2ebtmE=\frac{1}{2}kA^2e^{-\frac{bt}{m}}

C

md2xdt2+bdxdt+kx=0m\frac{d^2x}{dt^2}+b\frac{dx}{dt}+kx=0

D

x=Aebmcos(ωt+ϕ)x=Ae^{-\frac{b}{m}}\cos(\omega't+\phi)

Answer

x=Aebmcos(ωt+ϕ)x=Ae^{-\frac{b}{m}}\cos(\omega't+\phi)

Explanation

Solution

The correct answer is (D) : x=Aebmcos(ωt+ϕ)x=Ae^{-\frac{b}{m}}\cos(\omega't+\phi)