Solveeit Logo

Question

Question: A block of mass m is attached to a spring of spring constant k and has a natural frequency \(\omega\...

A block of mass m is attached to a spring of spring constant k and has a natural frequency ω\omegat (\neq ω\omega 0) is applied to the oscillator. The time displacement of the oscillator will be proportional to

A

B

1 m(ω02ω2)\frac { 1 } { \mathrm {~m} \left( \omega _ { 0 } ^ { 2 } - \omega ^ { 2 } \right) }

C

1 m(ω02+ω2)\frac { 1 } { \mathrm {~m} \left( \omega _ { 0 } ^ { 2 } + \omega ^ { 2 } \right) }

D

Answer

1 m(ω02ω2)\frac { 1 } { \mathrm {~m} \left( \omega _ { 0 } ^ { 2 } - \omega ^ { 2 } \right) }

Explanation

Solution

For forced oscillation the time displacement at any instant is given by