Solveeit Logo

Question

Question: A block of mass m is attached to a spring of spring constant k is free to oscillate with angular vel...

A block of mass m is attached to a spring of spring constant k is free to oscillate with angular velocity ω\omega in a horizontal plane without friction or clamping. It is pulled to a distance x0 and pushed towards the centre with a velocity v0 at time t = 0. The amplitude of oscillations in terms of ω\omega, x0 and v0 is

A

ν02ω2x02\sqrt{\frac{\nu_{0}^{2}}{\omega^{2}} - x_{0}^{2}}

B

ω2ν02+x02\sqrt{\omega^{2}\nu_{0}^{2} + x_{0}^{2}}

C

x02ω2+ν02\sqrt{\frac{x_{0}^{2}}{\omega^{2}} + \nu_{0}^{2}}

D

ν02ω2+x02\sqrt{\frac{\nu_{0}^{2}}{\omega^{2}} + x_{0}^{2}}

Answer

ν02ω2+x02\sqrt{\frac{\nu_{0}^{2}}{\omega^{2}} + x_{0}^{2}}

Explanation

Solution

Let the displacement of the block at instant of time t be

x=Acos(ωt+φ)x = A\cos(\omega t + \varphi)

At t=0x=x0t = 0x = x_{0}

x0=Acosφ\therefore x_{0} = A\cos\varphi

Velocity v=dxdt=Aωsin(ωt+φ)v = \frac{dx}{dt} = - A\omega\sin(\omega t + \varphi)

At t=0,v=v0t = 0,v = - v_{0}

v0=Aωsinφ\therefore - v_{0} = - A\omega\sin\varphi

Or Asinφ=v0ωA\sin\varphi = \frac{v_{0}}{\omega} …… (i)

Squaring and adding (i) and (ii), we get

A2(sin2φ+cos2φ)=v02ω2+x02A^{2}(\sin^{2}\varphi + \cos^{2}\varphi) = \frac{v_{0}^{2}}{\omega^{2}} + x_{0}^{2}

A=v02ω2+x02A = \sqrt{\frac{v_{0}^{2}}{\omega^{2}} + x_{0}^{2}}