Solveeit Logo

Question

Question: A block of mass 'm' is attached to a spring in natural length of spring constant 'k'. The other end ...

A block of mass 'm' is attached to a spring in natural length of spring constant 'k'. The other end 'A' of the spring is moved with a constant velocity 'v' away from the block. Find the maximum extension in the spring –

A

14mv2k\frac { 1 } { 4 } \sqrt { \frac { \mathrm { mv } ^ { 2 } } { \mathrm { k } } }

B

mv2k\sqrt { \frac { \mathrm { mv } ^ { 2 } } { \mathrm { k } } }

C

12mv2k\frac { 1 } { 2 } \sqrt { \frac { \mathrm { mv } ^ { 2 } } { \mathrm { k } } }

D

2mv2k2 \sqrt { \frac { \mathrm { mv } ^ { 2 } } { \mathrm { k } } }

Answer

mv2k\sqrt { \frac { \mathrm { mv } ^ { 2 } } { \mathrm { k } } }

Explanation

Solution

Consider an observer moving with speed v with point A in the same direction.

In the frame of observer, block will have initial velocity v towards left.

During maximum extension, the block will come to rest with respect to the observer. Now, by energy conservation, 12mv2=12kxmax2\frac { 1 } { 2 } \mathrm { mv } ^ { 2 } = \frac { 1 } { 2 } \mathrm { kx } _ { \max } ^ { 2 }

\ xmax = mv2k\sqrt { \frac { \mathrm { mv } ^ { 2 } } { \mathrm { k } } }