Solveeit Logo

Question

Question: A block of mass m = 1 kg slides with velocity v = 6 m/s on a friction less horizontal surface and co...

A block of mass m = 1 kg slides with velocity v = 6 m/s on a friction less horizontal surface and collides with a uniform vertical rod and sticks to it as shown. The rod is pivoted about O and swings as a result of the collision making angle θ before momentarily coming to rest. If the rod has mass M = 2 kg and length l = 1 m, the value of θ is approximately (take g = 10 m/s2)

A

30°

B

45°

C

60°

D

90°

Answer

60°

Explanation

Solution

  1. Conservation of Angular Momentum (Collision):

    • Initial angular momentum of the block about O: Linitial=mv×lL_{initial} = mv \times l.
    • Moment of inertia of the rod about O: Irod=13Ml2I_{rod} = \frac{1}{3}Ml^2.
    • Moment of inertia of the block about O: Iblock=ml2I_{block} = ml^2.
    • Total moment of inertia after collision: Itotal=Irod+Iblock=13Ml2+ml2=l2(M3+m)I_{total} = I_{rod} + I_{block} = \frac{1}{3}Ml^2 + ml^2 = l^2(\frac{M}{3} + m).
    • Just after collision, angular momentum Lfinal=ItotalωL_{final} = I_{total}\omega.
    • Equating Linitial=LfinalL_{initial} = L_{final}: mvl=l2(M3+m)ω    ω=mvl(M3+m)mvl = l^2(\frac{M}{3} + m)\omega \implies \omega = \frac{mv}{l(\frac{M}{3} + m)}.
    • Plugging in values: m=1,v=6,M=2,l=1m=1, v=6, M=2, l=1. ω=1×61(23+1)=65/3=185=3.6\omega = \frac{1 \times 6}{1(\frac{2}{3} + 1)} = \frac{6}{5/3} = \frac{18}{5} = 3.6 rad/s.
  2. Conservation of Mechanical Energy (Swing):

    • Initial kinetic energy (just after collision): KEinitial=12Itotalω2KE_{initial} = \frac{1}{2}I_{total}\omega^2. Itotal=12(23+1)=53I_{total} = 1^2(\frac{2}{3} + 1) = \frac{5}{3} kg m2^2. KEinitial=12×53×(3.6)2=56×12.96=10.8KE_{initial} = \frac{1}{2} \times \frac{5}{3} \times (3.6)^2 = \frac{5}{6} \times 12.96 = 10.8 J.
    • Potential energy gained when rod swings by angle θ\theta: Center of mass of rod rises by l2(1cosθ)\frac{l}{2}(1-\cos\theta). Block rises by l(1cosθ)l(1-\cos\theta). PEfinal=Mghrod+mghblock=Mgl2(1cosθ)+mgl(1cosθ)=(M2+m)gl(1cosθ)PE_{final} = Mgh_{rod} + mgh_{block} = Mg\frac{l}{2}(1-\cos\theta) + mgl(1-\cos\theta) = (\frac{M}{2} + m)gl(1-\cos\theta).
    • Plugging in values: M=2,m=1,g=10,l=1M=2, m=1, g=10, l=1. PEfinal=(22+1)×10×1×(1cosθ)=2×10×(1cosθ)=20(1cosθ)PE_{final} = (\frac{2}{2} + 1) \times 10 \times 1 \times (1-\cos\theta) = 2 \times 10 \times (1-\cos\theta) = 20(1-\cos\theta).
    • Equating KEinitial=PEfinalKE_{initial} = PE_{final}: 10.8=20(1cosθ)10.8 = 20(1-\cos\theta). 1cosθ=10.820=0.541-\cos\theta = \frac{10.8}{20} = 0.54. cosθ=10.54=0.46\cos\theta = 1 - 0.54 = 0.46.
    • θ=arccos(0.46)62.63\theta = \arccos(0.46) \approx 62.63^\circ.
    • This value is closest to 6060^\circ.