Solveeit Logo

Question

Question: A block of mass 2 kg initially at rest moves under the action of an applied horizontal force of 6 N ...

A block of mass 2 kg initially at rest moves under the action of an applied horizontal force of 6 N on a rough horizontal surface. The coefficient of friction between block and surface is 0.1. The work done by the applied force in 10 s is (Take g=10 ms2\mathrm { g } = 10 \mathrm {~ms} ^ { - 2 })

A

200 J

B

-200 J

C

600 J

D

-600 J

Answer

600 J

Explanation

Solution

The various forces acting on the block is as Shown in the figure.

Here, m=2 kg,μ=0.1, F=6 N, g=10 ms2\mathrm { m } = 2 \mathrm {~kg} , \mu = 0.1 , \mathrm {~F} = 6 \mathrm {~N} , \mathrm {~g} = 10 \mathrm {~ms} ^ { - 2 }

Force of friction,

f=μN=0.1×2 kg×10 ms2=2 N\mathrm { f } = \mu \mathrm { N } = 0.1 \times 2 \mathrm {~kg} \times 10 \mathrm {~ms} ^ { - 2 } = 2 \mathrm {~N}

Net force with which the block moves

Net acceleration with which the block moves

Distance travelled by the block in 10 s is

d=12at2=12×2 ms2(10 s)2=100 m(u=0)\mathrm { d } = \frac { 1 } { 2 } \mathrm { at } ^ { 2 } = \frac { 1 } { 2 } \times 2 \mathrm {~ms} ^ { - 2 } ( 10 \mathrm {~s} ) ^ { 2 } = 100 \mathrm {~m} \quad ( \therefore \mathrm { u } = 0 )

As the applied force and displacement are in the same direction, therefore angle between the applied force and the displacement is θ=00\theta = 0 ^ { 0 }

Hence,

Work done by the applied force,