Solveeit Logo

Question

Question: A block of mass 10 kg is moving in x-direction with a constant speed of \(10 \mathrm {~ms} ^ { - 1 }...

A block of mass 10 kg is moving in x-direction with a constant speed of 10 ms110 \mathrm {~ms} ^ { - 1 }. It is subjected to a retarding force during its travel from x = 20 m to x = 30 m. Its final kinetic energy will be:

A

250 J

B

275 J

C

450 J

D

475 J

Answer

475 J

Explanation

Solution

Here, m=10 kg,vi=10 m s1\mathrm { m } = 10 \mathrm {~kg} , \mathrm { v } _ { \mathrm { i } } = 10 \mathrm {~m} \mathrm {~s} ^ { - 1 }

Initial kinetic energy of the block is

ki=12mvi2=12×(10 kg)×(10 ms1)2=500 J\mathrm { k } _ { \mathrm { i } } = \frac { 1 } { 2 } \mathrm { mv } _ { \mathrm { i } } ^ { 2 } = \frac { 1 } { 2 } \times ( 10 \mathrm {~kg} ) \times \left( 10 \mathrm {~ms} ^ { - 1 } \right) ^ { 2 } = 500 \mathrm {~J}

Work done by retarding force

=0.1[9004002]=25 J= - 0.1 \left[ \frac { 900 - 400 } { 2 } \right] = - 25 \mathrm {~J}

According to work-energy theorem