Solveeit Logo

Question

Physics Question on work, energy and power

A block of mass 10kg10\, kg is moving in xx-direction with a constant speed of 10m/s10\, m / s. It is subjected to a retarding force F=0.1×J/mF=-0.1 \times J / m during its travel from x=20mx=20\, m to x=30mx=30\, m. Its final kinetic energy will be :

A

250 J

B

275 J

C

450 J

D

475 J

Answer

475 J

Explanation

Solution

Apply work-energy theorem. When a force acts upon a moving body, then the kinetic energy of the body increases and the increase is equal to the work done. This is work energy theorem. Work done =12mv212mu2=KfKi=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=K_{f}-K_{i} Another definition of work done is force xx displacement. Fdx=Kf12mvi2\therefore F d x=K_{f}-\frac{1}{2} m v_{i}^{2} where the subscripts ff and ii stand for final and initial. Fdx=Kf12×10×(10)2F \cdot d x =K_{f}-\frac{1}{2} \times 10 \times(10)^{2} Fdx=Kf500\Rightarrow F \cdot d x=K_{f}-500 x=20x=30(0.1)xdx=Kf500\Rightarrow \int\limits_{x=20}^{x=30}(-0.1) x d x =K_{f}-500 Using the formula xndx=xn+1n+1\int x^{n} d x=\frac{x^{n+1}}{n+1}, we have 0.1[x22]x=20x=30=Kf500-0.1\left[\frac{x^{2}}{2}\right]_{x=20}^{x=30} =K_{f}-500 0.1[(30)22(20)22]=Kf500-0.1\left[\frac{(30)^{2}}{2}-\frac{(20)^{2}}{2}\right] =K_{f}-500 Kf500=25\Rightarrow K_{f}-500 =-25 Kf=50025=475J\Rightarrow K_{f}=500-25 =475\, J