Solveeit Logo

Question

Physics Question on laws of motion

A block of mass 10kg10 \,kg, initially at rest, makes a downward motion on 4545^{\circ} inclined plane. Then the distance travelled by the block after 2s2 s is (Assume the coefficient of kinetic friction to be 0.30.3 and g=10ms2)g=10\, ms ^{-2} )

A

72m7 \sqrt{2}\, m

B

92m\frac{9}{\sqrt{2}}\, m

C

102m10 \sqrt{2}\, m

D

52m5 \sqrt{2} \, m

Answer

72m7 \sqrt{2}\, m

Explanation

Solution

The figure given below, shows the downward motion of a body on the inclined plane, then

The equation of acceleration in downwards motion of the block,
a=gsinθμgcosθ(i)a=g \sin \theta-\mu \,g \cos \theta\,\,\,\,\,\,\dots(i)
Given, mass of a block, m=10kg,θ=45,μ=0.3m=10 \,kg , \theta=45^{\circ}, \mu=0.3
and time, t=2st=2\, s, Putting the given values in Eq (i), we get
a=g(sin450.3cos45)\Rightarrow\, a =g\left(\sin 45^{\circ}-0.3 \cos 45^{\circ}\right)
=102(10.3)=10×0.72m/s2=\frac{10}{\sqrt{2}}(1-0.3)=\frac{10 \times 0.7}{\sqrt{2}} \,m / s ^{2}
Displacement of the block, from the second equation of the motion,
s=ut+12at2(u=0)s=u t+\frac{1}{2} a t^{2} \,(\because u=0)
s=12×10×0.72×(2)2=7×422=72ms=\frac{1}{2} \times \frac{10 \times 0.7}{\sqrt{2}} \times(2)^{2}=\frac{7 \times 4}{2 \sqrt{2}}=7 \sqrt{2} m