Solveeit Logo

Question

Question: A block m<sub>1</sub> strikes a stationary block m<sub>3</sub>inelastically. Another block m<sub>2</...

A block m1 strikes a stationary block m3inelastically. Another block m2 is kept on m3. Neglecting the friction between all contacting surfaces, the fractional decrease of K. E. of the system in collision is:

A

m1m1+m2+m3\frac{m_{1}}{m_{1} + m_{2} + m_{3}}

B

m1m2+m3\frac{m_{1}}{m_{2} + m_{3}}

C

m3m1+m3\frac{m_{3}}{m_{1} + m_{3}}

D

m2+m3m1+m2+m3\frac{m_{2} + m_{3}}{m_{1} + m_{2} + m_{3}}.

Answer

m3m1+m3\frac{m_{3}}{m_{1} + m_{3}}

Explanation

Solution

Since the impact between m1 and m3 is inelastic, m1 and m3 will move together towards right and m2 does not move due to the absence of friction.The velocity of the combined mass

= v=m1vm1+m3v^{'} = \frac{m_{1}v}{m_{1} + m_{3}}

ΔKEKE=12m1v212(m1+m3)v212m1v2=1(m1+m3m1)(vv)2\frac{|\Delta KE|}{KE} = \frac{\frac{1}{2}m_{1}v^{2} - \frac{1}{2}\left( m_{1} + m_{3} \right)v^{'2}}{\frac{1}{2}m_{1}v^{2}} = 1 - \left( \frac{m_{1} + m_{3}}{m_{1}} \right)\left( \frac{v^{'}}{v} \right)^{2}

= 1 – (m1+m3m1)(m1vm1+m3)2=1m1m1+m3\left( \frac{m_{1} + m_{3}}{m_{1}} \right)\left( \frac{m_{1}v}{m_{1} + m_{3}} \right)^{2} = 1 - \frac{m_{1}}{m_{1} + m_{3}}= m3m1+m3\frac{m_{3}}{m_{1} + m_{3}}

Hence, the correct choice is (3).