Solveeit Logo

Question

Question: A block \(m_{1}\) strikes a stationary block \(m_{3}\)inelstically. Another block \(m_{2}\) is kept ...

A block m1m_{1} strikes a stationary block m3m_{3}inelstically. Another block m2m_{2} is kept on m3m_{3}. Neglecting the friction between all contacting surfaces, the fractional decrease of K. E. of the system in collision is

A

m1m1+m2+m3\frac{m_{1}}{m_{1} + m_{2} + m_{3}}

B

m1m2+m3\frac{m_{1}}{m_{2} + m_{3}}

C

m3m1+m3\frac{m_{3}}{m_{1} + m_{3}}

D

m2+m3m1+m2+m3\frac{m_{2} + m_{3}}{m_{1} + m_{2} + m_{3}}

Answer

m3m1+m3\frac{m_{3}}{m_{1} + m_{3}}

Explanation

Solution

Since the impact between m1m_{1}and m3m_{3} is inelastic, m1m_{1}and m3m_{3} will move together towards right and m2m_{2}does not move due to the absence of friction.

The velocity of the combined mass = v=m1vm1+m3v' = \frac{m_{1}v}{m_{1} + m_{3}}

ΔKEKE=12m1v212(m1+m3)v212m1v2=1(m1+m3m1)(v2v)\frac{|\Delta KE|}{KE} = \frac{\frac{1}{2}m_{1}v^{2} - \frac{1}{2}\left( m_{1} + m_{3} \right)v'^{2}}{\frac{1}{2}m_{1}v^{2}} = 1 - \left( \frac{m_{1} + m_{3}}{m_{1}} \right)\left( \frac{v'^{2}}{v} \right)

1(m1+m3m1)(m1vm1+m3)2=1m1m1+m3=m3m1+m31 - \left( \frac{m_{1} + m_{3}}{m_{1}} \right)\left( \frac{m_{1}v}{m_{1} + m_{3}} \right)^{2} = 1 - \frac{m_{1}}{m_{1} + m_{3}} = \frac{m_{3}}{m_{1} + m_{3}}