Solveeit Logo

Question

Question: A block is placed on a frictionless horizontal table. The mass of the block is m and springs are att...

A block is placed on a frictionless horizontal table. The mass of the block is m and springs are attached on either side with force constants K2K _ { 2 }. If the block is displaced a little and left to oscillate, then the angular frequency of oscillation will be

A

(K1+K2m)1/2\left( \frac { K _ { 1 } + K _ { 2 } } { m } \right) ^ { 1 / 2 }

B

[K1K2m(K1+K2)]1/2\left[ \frac { K _ { 1 } K _ { 2 } } { m \left( K _ { 1 } + K _ { 2 } \right) } \right] ^ { 1 / 2 }

C

[K1K2(K1K2)m]1/2\left[ \frac { K _ { 1 } K _ { 2 } } { \left( K _ { 1 } - K _ { 2 } \right) m } \right] ^ { 1 / 2 }

D

[K12+K22(K1+K2)m]1/2\left[ \frac { K _ { 1 } ^ { 2 } + K _ { 2 } ^ { 2 } } { \left( K _ { 1 } + K _ { 2 } \right) m } \right] ^ { 1 / 2 }

Answer

(K1+K2m)1/2\left( \frac { K _ { 1 } + K _ { 2 } } { m } \right) ^ { 1 / 2 }

Explanation

Solution

In this case springs are in parallel, so

ω=keqm=k1+k2m\omega = \sqrt { \frac { k _ { e q } } { m } } = \sqrt { \frac { k _ { 1 } + k _ { 2 } } { m } }