Solveeit Logo

Question

Question: A block is placed on a friction less horizontal table. The mass of the block is m and springs of for...

A block is placed on a friction less horizontal table. The mass of the block is m and springs of force constant k1, k2 are attached on either side with if the block is displaced a little and left to oscillate, then the angular frequency of oscillation will be

A

(k1+k2m)1/2\left( \frac { k _ { 1 } + k _ { 2 } } { m } \right) ^ { 1 / 2 }

B

[k1k2m(k1+k2)]1/2\left[ \frac { k _ { 1 } k _ { 2 } } { m \left( k _ { 1 } + k _ { 2 } \right) } \right] ^ { 1 / 2 }

C

[k1k2(k1k2)m]1/2\left[ \frac { k _ { 1 } k _ { 2 } } { \left( k _ { 1 } - k _ { 2 } \right) m } \right] ^ { 1 / 2 }

D

[k12+k22(k1+k2)m]1/2\left[ \frac { k _ { 1 } ^ { 2 } + k _ { 2 } ^ { 2 } } { \left( k _ { 1 } + k _ { 2 } \right) m } \right] ^ { 1 / 2 }

Answer

(k1+k2m)1/2\left( \frac { k _ { 1 } + k _ { 2 } } { m } \right) ^ { 1 / 2 }

Explanation

Solution

Given condition match with parallel combination so

keff =k1+k2k _ { \text {eff } } = k _ { 1 } + k _ { 2 }ω=keffm=k1+k2m\omega = \sqrt { \frac { k _ { e f f } } { m } } = \sqrt { \frac { k _ { 1 } + k _ { 2 } } { m } } .