Solveeit Logo

Question

Question: A block is dragged on a smooth plane with the help of a rope which moves with a velocity v as shown ...

A block is dragged on a smooth plane with the help of a rope which moves with a velocity v as shown in figure. The horizontal velocity of the block is -

A

v

B

vsinθ\frac { \mathrm { v } } { \sin \theta }

C

v sin q

D

vcosθ\frac { \mathrm { v } } { \cos \theta }

Answer

vsinθ\frac { \mathrm { v } } { \sin \theta }

Explanation

Solution

x2 + y2 = l2

2xdudt2 \mathrm { x } \frac { \mathrm { du } } { \mathrm { dt } } + 0 = 2l ddt\frac { \mathrm { d } \ell } { \mathrm { dt } } [y = constant]

or dxdt=ddt(x/)=vsinθ\left| \frac { \mathrm { dx } } { \mathrm { dt } } \right| = \frac { \left| \frac { \mathrm { d } \ell } { \mathrm { dt } } \right| } { ( \mathrm { x } / \ell ) } = \frac { \mathrm { v } } { \sin \theta }