Solveeit Logo

Question

Physics Question on laws of motion

A block A of mass m1m_1 rests on a horizontal table. A light string connected to it passes over a frictionless pully at the edge of table and from its other end another block B of mass m2m_2 is suspended. The coefficient of kinetic friction between the block and the table is μk\mu_k. When the block A is sliding on the table, the tension in the string is

A

m1m2(1+μk)g(m1+m2)\frac{m_1m_2(1+\mu_k)g}{(m_1+m_2)}

B

m1m2(1μk)g(m1+m2)\frac{m_1m_2(1-\mu_k)g}{(m_1+m_2)}

C

(m1+μkm1)g(m1+m2)\frac{(m_1+\mu_k m_1)g}{(m_1+m_2)}

D

(m2μkm1)g(m1+m2)\frac{(m_2-\mu_k m_1)g}{(m_1+m_2)}

Answer

m1m2(1+μk)g(m1+m2)\frac{m_1m_2(1+\mu_k)g}{(m_1+m_2)}

Explanation

Solution

m2gT=m2a{m_2g -T = m_2a}
Tμkm1g=m1a{T - \mu_k \,\,\, m_1g = m_1a}
a=(m2μkm1)gm1+m2{ \Rightarrow a = \frac {(m_2 -\mu_km_1)_g}{m_1 + m_2}}
For the block of mass m2'm_2'
m2gT=m2[m2μkm1+m2]gm_2g -T = m_2\bigg[\frac {m-2 - \mu_k}{m_1 + m_2}\bigg]g
m2gT=m2[m2μkm1m1+m2]m2g=m2g[m2μkm1m1+M2]m_2g - T = m_2{\bigg[\frac{m_2 -\mu_km-1}{m_1+m_2}\bigg]} m_2g =m_2g{\bigg[\frac{m_2 -\mu_km-1}{m_1+M_2}\bigg]}
T=m1m2(1+μk)gm1+m2\Rightarrow {T = \frac{m_1m_2(1+\mu_k)_g}{m_1 +m_2}}