Solveeit Logo

Question

Question: A bird is flying in a direction \(30^\circ \) east of North with a speed of \(5\;{\rm{km}}{{\rm{h}}^...

A bird is flying in a direction 3030^\circ east of North with a speed of 5  kmh15\;{\rm{km}}{{\rm{h}}^{ - 1}} and a cyclist is going on the road towards East at a speed of 10  kmh110\;{\rm{km}}{{\rm{h}}^{ - 1}} The velocity of bird observed by cyclist is
A. 53  kmh15\sqrt 3 \;{\rm{km}}{{\rm{h}}^{ - 1}} in a direction at 6060^\circ West of North
B. 5  kmh15\;{\rm{km}}{{\rm{h}}^{ - 1}} in North direction
C. 53  kmh15\sqrt 3 \;{\rm{km}}{{\rm{h}}^{ - 1}} in a direction at 6060^\circ
D. 103  kmh110\sqrt 3 \;{\rm{km}}{{\rm{h}}^{ - 1}} in a direction at 3030^\circ West of North

Explanation

Solution

First, we will draw the direction diagram for the velocity using the given statements. Then, the vectors will be written in terms of xx and yy-components.

Complete step by step answer:
Given, the direction of flight of bird is 3030^\circ east of North and the speed of the bird is 5  kmh15\;{\rm{km}}{{\rm{h}}^{ - 1}} in that direction.

Now, the velocity diagram for the velocity of the bird and the velocity of the cyclist can be drawn as below.

In the above diagram, the east west axis corresponds to the XX axis and the north-south axis corresponds to the YY axis. So, we take the component of the velocity of the bird along the east west axis as vbsinθ\left| {\overrightarrow {{v_b}} } \right|\sin \theta and the velocity along the north-south axis as vbcosθ\left| {\overrightarrow {{v_b}} } \right|\cos \theta as shown in the vector diagram below.

If we take θ=30\theta = 30^\circ and vb{\overrightarrow v _{_b}} as the velocity vector of the bird, then we can write
vb=vbsinθi^+vbcosθj^\overrightarrow {{v_b}} = \left| {\overrightarrow {{v_b}} } \right|\sin \theta \widehat i + \left| {\overrightarrow {{v_b}} } \right|\cos \theta \widehat j ……(1)
The speed of the bird, vb=5  kmh1\left| {\overrightarrow {{v_b}} } \right| = 5\;{\rm{km}}{{\rm{h}}^{ - 1}}. Hence, by substituting the values of vb\left| {\overrightarrow {{v_b}} } \right| and θ\theta in the equation (1), we get

vb=5sin30i^+5cos30j^ vb=5×12i^+5×32j^ vb=52i^+532j^{\overrightarrow v _{_b}} = 5\sin 30^\circ \widehat i + 5\cos 30^\circ \widehat j\\\ \Rightarrow{\overrightarrow v _{_b}} = 5 \times \dfrac{1}{2}\widehat i + 5 \times \dfrac{{\sqrt 3 }}{2}\widehat j\\\ \Rightarrow{\overrightarrow v _{_b}} = \dfrac{5}{2}\widehat i + 5\dfrac{{\sqrt 3 }}{2}\widehat j

Let us take vc\overrightarrow {{v_c}} as the velocity vector for the cyclist. Since the cyclist moves towards the east, we can define the velocity vector for him as,
vc=vci^\overrightarrow {{v_c}} = \left| {\overrightarrow {{v_c}} } \right|\widehat i
It is given that the cyclist moves in the east direction with speed 10  kmh110\;{\rm{km}}{{\rm{h}}^{ - 1}}. Therefore, vc=10  kmh1\left| {\overrightarrow {{v_c}} } \right| = 10\;{\rm{km}}{{\rm{h}}^{ - 1}}. Since vc=10  kmh1\left| {\overrightarrow {{v_c}} } \right| = 10\;{\rm{km}}{{\rm{h}}^{ - 1}}, we can write
vc=10i^\overrightarrow {{v_c}} = 10\widehat i
Hence, the velocity of the bird as observed by the cyclist can be written as
vbc=vbvc vbc=(52i^+532j^)10i^ vbc=152i^+532j^ \overrightarrow {{v_{bc}}} = \overrightarrow {{v_b}} - \overrightarrow {{v_c}} \\\ \Rightarrow\overrightarrow {{v_{bc}}} = \left( {\dfrac{5}{2}\widehat i + 5\dfrac{{\sqrt 3 }}{2}\widehat j} \right) - 10\widehat i\\\ \Rightarrow\overrightarrow {{v_{bc}}} = - \dfrac{{15}}{2}\widehat i + 5\dfrac{{\sqrt 3 }}{2}\widehat j
Therefore, the magnitude of vbc\overrightarrow {{v_{bc}}} is
vbc=(152)2+(532)2 vbc=2254+754 vbc=3004 vbc=75 \left| {\overrightarrow {{v_{bc}}} } \right| = \sqrt {{{\left( { - \dfrac{{15}}{2}} \right)}^2} + {{\left( {5\dfrac{{\sqrt 3 }}{2}} \right)}^2}} \\\ \Rightarrow \left| {\overrightarrow {{v_{bc}}} } \right| = \sqrt {\dfrac{{225}}{4} + \dfrac{{75}}{4}} \\\ \Rightarrow \left| {\overrightarrow {{v_{bc}}} } \right| = \sqrt {\dfrac{{300}}{4}} \\\ \Rightarrow \left| {\overrightarrow {{v_{bc}}} } \right| = \sqrt {75}
Or
vbc=53\left| {\overrightarrow {{v_{bc}}} } \right| = 5\sqrt 3
So, the velocity of the bird as observed by the cyclist is 53  kmh15\sqrt 3 \;{\rm{km}}{{\rm{h}}^{ - 1}}.

If we take vbc=vbccosϕi^+vbcsinϕ=152i^+532j^\overrightarrow {{v_{bc}}} = \left| {\overrightarrow {{v_{bc}}} } \right|\cos \phi \widehat i + \left| {\overrightarrow {{v_{bc}}} } \right|\sin \phi = - \dfrac{{15}}{2}\widehat i + 5\dfrac{{\sqrt 3 }}{2}\widehat j, where ϕ\phi is the angle made by the velocity vector vbc\overrightarrow {{v_{bc}}} with vc\overrightarrow {{v_c}} , then we can write
tanϕ=vbccosϕvbcsinϕ\tan \phi = \dfrac{{\left| {\overrightarrow {{v_{bc}}} } \right|\cos \phi }}{{\left| {\overrightarrow {{v_{bc}}} } \right|\sin \phi }}
It implies,
tanϕ=532152 tanϕ=33 tanϕ=13 \tan \phi = \dfrac{{\dfrac{{5\sqrt 3 }}{2}}}{{ - \dfrac{{15}}{2}}}\\\ \Rightarrow\tan \phi = - \dfrac{{\sqrt 3 }}{3}\\\ \Rightarrow\tan \phi = - \dfrac{1}{{\sqrt 3 }}
We know,tan30=13\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}. Hence,
\-tan30=13 tan(18030)=13 tan150=13 \- \tan 30^\circ = - \dfrac{1}{{\sqrt 3 }}\\\ \Rightarrow\tan \left( {180^\circ - 30^\circ } \right) = \dfrac{{ - 1}}{{\sqrt 3 }}\\\ \Rightarrow\tan 150^\circ = \dfrac{{ - 1}}{{\sqrt 3 }}
It implies, tanϕ=tan150\tan \phi = \tan 150^\circ
Or
ϕ=150 ϕ=90+60 \phi = 150^\circ \\\ \Rightarrow\phi = 90^\circ + 60^\circ
From the above equation for angle, we can draw the velocity diagram for the velocity of the bird as observed by the cyclist as below.

Therefore, the velocity of the bird as observed by the cyclist is 53  kmh15\sqrt 3 \;{\rm{km}}{{\rm{h}}^{ - 1}} in a direction at 6060^\circ west of north.

Hence, we can say that option A is correct.

Note: Please note that east of north and north of east implies different directions. If a person moves towards the east from the north axis, then the direction is referred to as east of north. If the person moves north from the east axis, then the direction is referred to as north of east. So,3030^\circ east of north means moving 3030^\circ to the east from the north axis. Sometimes, we may confuse it as moving 3030^\circ from the east to the north axis.