Solveeit Logo

Question

Question: A binary liquid (AB) shows positive deviation from Raoult’s law when: A. \({{\text{P}}_{\text{A}}}...

A binary liquid (AB) shows positive deviation from Raoult’s law when:
A. PA>PAoχAliquid{{\text{P}}_{\text{A}}}>\text{P}_{\text{A}}^{\text{o}}\chi _{\text{A}}^{\text{liquid}} and PB>PBoχBliquid{{\text{P}}_{\text{B}}}>\text{P}_{\text{B}}^{\text{o}}\chi _{\text{B}}^{\text{liquid}}
B. Intermolecular forces AA,BB>AB\text{A}-\text{A},\text{B}-\text{B}>\text{A}-\text{B}
C. Vmix>0\vartriangle {{\text{V}}_{\text{mix}}}>0
D. Hmix>0\vartriangle {{\text{H}}_{\text{mix}}}>0

Explanation

Solution

Positive deviation from ideality indicates that solutions are no longer behaving as ideal solutions. The resultant pressure of solution (AB)\left( \text{A}-\text{B} \right)is increased than initial pressure of solutions (AA)\left( \text{A}-\text{A} \right) and (BB)\left( \text{B}-\text{B} \right). This deviation is mainly based on the interactive forces between the particles only. Apply that and get the required results.

Complete step by step solution:
Let us discuss the characteristics of positive deviation of Raoult’s law and reasons for such deviations from ideal solutions.

Features of positive deviationReasons
Hmix>0\vartriangle {{\text{H}}_{\text{mix}}}>0The heat of mixing is positive Hmix>0\vartriangle {{\text{H}}_{\text{mix}}}>0. This is because the heat absorbed to form a new molecule (AB)\left( \text{A}-\text{B} \right) is less than the heat evolved in breaking the initial interaction between the solute particles (AA)\left( \text{A}-\text{A} \right) and solvent particles (BB)\left( \text{B}-\text{B} \right) individually.
Vmix>0\vartriangle {{\text{V}}_{\text{mix}}}>0The resultant volume is greater than the initial volume of solutes. This is because on the addition of solute, the volume expands on dissolution of solute and solvent. So, Vmix>0\vartriangle {{\text{V}}_{\text{mix}}}>0.
AA,BB>AB\text{A}-\text{A},\text{B}-\text{B}>\text{A}-\text{B}The intermolecular forces between solute-solute and solvent-solvent are stronger than forces between solute-solvent. It means that the bonds between solute-solvent are easier to break and thus there is an increment in vapour pressure.
PA>PAoχAliquid{{\text{P}}_{\text{A}}}>\text{P}_{\text{A}}^{\text{o}}\chi _{\text{A}}^{\text{liquid}} and PB>PBoχBliquid{{\text{P}}_{\text{B}}}>\text{P}_{\text{B}}^{\text{o}}\chi _{\text{B}}^{\text{liquid}}The formula of ideal solution vapour pressure is PA= PAoχAliquid{{\text{P}}_{\text{A}}}\text{= P}_{\text{A}}^{\text{o}}\chi _{\text{A}}^{\text{liquid}} and PB= PBoχBliquid{{\text{P}}_{\text{B}}}\text{= P}_{\text{B}}^{\text{o}}\chi _{\text{B}}^{\text{liquid}}. The total pressure of solution is PT= PAoχAliquid+PBoχBliquid{{\text{P}}_{\text{T}}}\text{= P}_{\text{A}}^{\text{o}}\chi _{\text{A}}^{\text{liquid}}+\text{P}_{\text{B}}^{\text{o}}\chi _{\text{B}}^{\text{liquid}} or PT = PA+ PB{{\text{P}}_{\text{T}}}\text{ = }{{\text{P}}_{\text{A}}}+\text{ }{{\text{P}}_{\text{B}}}. The total vapour pressure is increased than ideal solutions’ vapour pressure. So, the terms need to be greater to obtain greater results. PA>PAoχAliquid{{\text{P}}_{\text{A}}}>\text{P}_{\text{A}}^{\text{o}}\chi _{\text{A}}^{\text{liquid}} and PB>PBoχBliquid{{\text{P}}_{\text{B}}}>\text{P}_{\text{B}}^{\text{o}}\chi _{\text{B}}^{\text{liquid}}.
Examples of positive deviation(1) acetone + ethanol (2) water + ethanol (3) cyclohexane + methanol

A binary liquid (AB) shows positive deviation from Raoult’s law when PA>PAoχAliquid{{\text{P}}_{\text{A}}}>\text{P}_{\text{A}}^{\text{o}}\chi _{\text{A}}^{\text{liquid}} and PB>PBoχBliquid{{\text{P}}_{\text{B}}}>\text{P}_{\text{B}}^{\text{o}}\chi _{\text{B}}^{\text{liquid}}, Intermolecular forces AA,BB>AB\text{A}-\text{A},\text{B}-\text{B}>\text{A}-\text{B}, Vmix>0\vartriangle {{\text{V}}_{\text{mix}}}>0 and Hmix>0\vartriangle {{\text{H}}_{\text{mix}}}>0.

The correct options are (A), (B), (C) and (D).

Note: There is no solution mixture in the real world which is completely ideal. This is because there are some of the other types of forces, as dipole forces, ion-dipole forces and Vander-Waal forces which exist in every molecule. So, in the real world, there is either a positive or negative deviation.