Solveeit Logo

Question

Physics Question on spherical lenses

A biconvexlens is cut intotwo equal parts by a plane perpendicular to the principal axis. If the power of the original lens is 4D4 D, the power of a cut lens will be

A

2D2 D

B

3D3 D

C

4D4 D

D

5D5 D

Answer

2D2 D

Explanation

Solution

Focal length o f a biconvex lens, 1f=(μ1)(1R11R2)\frac{1}{f}=\left(\mu-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) Here, R1=+R,R2=RR_{1}=+R, R_{2}=-R 1f=(μ1)(1R1(R))\therefore\frac{1}{f}=\left(\mu-1\right)\left(\frac{1}{R}-\frac{1}{\left(-R\right)}\right) 1f=2(μ1)R\frac{1}{f}=\frac{2\left(\mu-1\right)}{R} or f=R2(μ1)(i)f=\frac{R}{2\left(\mu-1\right)}\ldots\left(i\right) When a biconvex lens is cut into two equal parts by a plane perpendicular to the principal axis, then each half behaves as a piano convex lens. Focal length o f a piano convex lens 1f=(μ1)(1R11R2)\frac{1}{f'}=\left(\mu-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) Here R1=+R,R2=R_{1}=+R, R_{2}=\infty 1f=(μ1)(1R)\therefore\frac{1}{f'}=\left(\mu-1\right)\left(\frac{1}{R}\right) or f=R(μ1)(iii)f' =\frac{R}{\left(\mu-1\right)} \ldots\left(iii\right) From (i)\left(i\right) and (ii)\left(ii\right), we get f=2f(iii)f'=2f \dots(iii) Power of a lens p=1f(iv)p=\frac{1}{f} \dots(iv) p=1f=12f(Using(iii))\therefore p'=\frac{1}{f'}=\frac{1}{2f} {\text{(Using}} (iii)) =p2=\frac{p}{2} p=p2=4D2=2Dp'=\frac{p}{2}=\frac{4D}{2}=2D (GivenP=4D){\text{(Given}} \,P=4D)