Solveeit Logo

Question

Physics Question on thermal properties of matter

A bi-metallic slab is made (refer figure) by fusing two material. The components have same thickness and lengths, but are of thermal conductivities K1K_1 and K2K_2. If the heat were to conduct across the faces (T1>T2)(T_1 > T_2), then effective thermal conductivity of the composite slab is

A

2(K1+K2)2(K_1 + K_2)

B

K1×K2K1+K2\frac{K_1 \times K_2}{K_1 +K_2}

C

2K1×K2K1+K22 \frac{K_1 \times K_2}{K_1 +K_2}

D

K1×K22\frac{K_1 \times K_2}{2}

Answer

2K1×K2K1+K22 \frac{K_1 \times K_2}{K_1 +K_2}

Explanation

Solution

Under steady condition, heat current through metallic slab of conductivity K1K_1 is same that in other slab of conductivity K2K_2
dQdt=dQ1dt=dQ2dt\frac{dQ}{dt} = \frac{dQ_{1}}{dt} = \frac{dQ_{2}}{dt}
or K1A1(T1T)L1=K2A2(TT2)L2\frac{K_{1 }A_{1} \left(T_{1 } -T\right)}{L_{1}} = \frac{K_{2}A_{2} \left(T -T_{2}\right)}{L_{2}}
A1=A2=A,L1=L2=LA_{1 } =A_{2} =A , L_{1} =L_{2} =L
So, K1=(T1T)=K2(TT2)K_{1}=\left(T_{1} -T\right)= K_{2}\left(T - T_{2}\right)
or , K1T1+K2T2=T(K1+K2)K_{1}T_{1} +K_{2}T_{2} =T\left(K_{1} + K_{2}\right)
\or , T=K1T1+K2T2K1+K2T= \frac{K_{1}T_{1} +K_{2} T_{2}}{ K_{1} + K_{2}}
Also, dQdt=K1A(T1T)L1\frac{dQ}{dt} = \frac{K_{1}A \left(T_{1} -T\right)}{L_{1} }
=K1AL(T1K1T1+K2T2K1+K2)\, \, \, \, = \frac{K_{1}A}{L} \left(T_{1} - \frac{K_{1}T_{1} +K_{2} T_{2}}{K_{1} +K_{2}}\right)
=A(T1T2)L(1K1+1K2)\, \, \, \, \, = \frac{A\left(T_{1} -T_{2}\right)}{L\left(\frac{1}{K_{1}} + \frac{1}{K_{2}}\right)} \, \, \, \, \, \, ...(i)
Let equivalent thermal conductivity of bi-metallic slab be Kand length of bi-metalic slab = L1+L2=2L.L_1 + L_2 = 2L.
So, dQdt=KA(T1T2)2L\frac{dQ}{dt} = \frac{K A\left(T_{1} -T_{2}\right)}{2L} \, \, \, \, \, ....(ii)
From eqn (i) and (ii)
K2=K1K2K1+K2\frac{K}{2} = \frac{K_{1}K_{2}}{K_{1} +K_{2}} or,K=2K1K2K1+k2K= \frac{2K_{1} K_{2}}{K_{1 } + k_{2}}