Solveeit Logo

Question

Question: A belt drive system given in the figure. Such that distance between the centres $OO'=120cm$ & radii ...

A belt drive system given in the figure. Such that distance between the centres OO=120cmOO'=120cm & radii are 20 cm & 80 cm respectively.

Answer

3

Explanation

Solution

Solution:

  1. Let the given radii be r=20r = 20 cm and R=80R = 80 cm with center distance d=120d = 120 cm.

  2. For an external belt, the angle (in each circle) associated with the tangency is given by

    sinθ=Rrd=8020120=60120=12θ=π6.\sin\theta = \frac{R - r}{d} = \frac{80 - 20}{120} = \frac{60}{120} = \frac{1}{2}\quad \Rightarrow\quad \theta = \frac{\pi}{6}.
  3. The length of each straight (tangent) segment is

    Ltangent=d2(Rr)2=1202602=144003600=603 cm.L_{\text{tangent}} = \sqrt{d^2 - (R - r)^2} = \sqrt{120^2 - 60^2} = \sqrt{14400 - 3600} = 60\sqrt{3}\text{ cm}.
  4. The belt touches the smaller circle over an arc subtending an angle

    θsmall=2π2θ=2ππ3=5π3.\theta_{\text{small}} = 2\pi - 2\theta = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}.

    Its arc length is

    Lsmall=rθsmall=20×5π3=100π3.L_{\text{small}} = r \cdot \theta_{\text{small}} = 20 \times \frac{5\pi}{3} = \frac{100\pi}{3}.
  5. The belt touches the larger circle over an arc subtending an angle

    θlarge=2θ=π3.\theta_{\text{large}} = 2\theta = \frac{\pi}{3}.

    Its arc length is

    Llarge=Rθlarge=80×π3=80π3.L_{\text{large}} = R \cdot \theta_{\text{large}} = 80 \times \frac{\pi}{3} = \frac{80\pi}{3}.
  6. The total belt length is the sum of the two arcs and the two tangent segments:

    α=Lsmall+Llarge+2Ltangent=100π3+80π3+2(603)=180π3+1203=60π+1203.\alpha = L_{\text{small}} + L_{\text{large}} + 2L_{\text{tangent}} = \frac{100\pi}{3} + \frac{80\pi}{3} + 2(60\sqrt{3}) = \frac{180\pi}{3} + 120\sqrt{3} = 60\pi + 120\sqrt{3}.
  7. Now, calculate α120\frac{\alpha}{120}:

    α120=60π120+1203120=π2+3.\frac{\alpha}{120} = \frac{60\pi}{120} + \frac{120\sqrt{3}}{120} = \frac{\pi}{2} + \sqrt{3}.

    Numerically,

    π21.5708,31.732,thusα1203.3028.\frac{\pi}{2} \approx 1.5708,\quad \sqrt{3} \approx 1.732,\quad \text{thus} \quad \frac{\alpha}{120} \approx 3.3028.
  8. Taking the greatest integer function:

    [α120]=3.\left[\frac{\alpha}{120}\right] = 3.

Core Explanation (Minimal):

  • Compute θ=π6\theta=\frac{\pi}{6} from sinθ=60120\sin\theta=\frac{60}{120}.
  • Tangent segment length: 60360\sqrt{3} cm.
  • Arc on small circle: 205π3=100π320\cdot\frac{5\pi}{3}=\frac{100\pi}{3}; on large circle: 80π3=80π380\cdot\frac{\pi}{3}=\frac{80\pi}{3}.
  • Total belt length: 60π+120360\pi+120\sqrt{3} cm.
  • Then, α120=π2+33.3028\frac{\alpha}{120}=\frac{\pi}{2}+\sqrt{3}\approx3.3028 so [α120]=3\left[\frac{\alpha}{120}\right]=3.