Question
Question: $|A|= \begin{bmatrix} 2k-1 & 2\sqrt{k} & 2\sqrt{k} \\ 2\sqrt{k} & 1 & -2k \\ -2\sqrt{k} & 2k & -1 \e...
∣A∣=2k−12k−2k2k12k2k−2k−1

(2k+1)^3
Solution
The determinant of the given 3x3 matrix was calculated using the cofactor expansion method. After expanding and simplifying the terms, the resulting polynomial in k was recognized as the cubic expansion of (2k+1)3.
The determinant of a 3x3 matrix adgbehcfi is given by: ∣A∣=a(ei−fh)−b(di−fg)+c(dh−eg)
Applying this to the given matrix: ∣A∣=(2k−1)12k−2k−1−(2k)2k−2k−2k−1+(2k)2k−2k12k
Calculating the 2x2 determinants:
- 12k−2k−1=(1)(−1)−(−2k)(2k)=−1+4k2
- 2k−2k−2k−1=(2k)(−1)−(−2k)(−2k)=−2k−4kk
- 2k−2k12k=(2k)(2k)−(1)(−2k)=4kk+2k
Substituting back: ∣A∣=(2k−1)(−1+4k2)−(2k)(−2k−4kk)+(2k)(4kk+2k)
Expanding: Term 1: (2k−1)(4k2−1)=8k3−2k−4k2+1 Term 2: −(2k)(−2k−4kk)=4k+8k2 Term 3: (2k)(4kk+2k)=8k2+4k
Summing the terms: ∣A∣=(8k3−4k2−2k+1)+(4k+8k2)+(8k2+4k) ∣A∣=8k3+(−4k2+8k2+8k2)+(−2k+4k+4k)+1 ∣A∣=8k3+12k2+6k+1
This is the expansion of (2k+1)3. (2k+1)3=(2k)3+3(2k)2(1)+3(2k)(1)2+13=8k3+12k2+6k+1.