Solveeit Logo

Question

Question: A = \(\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}\), then A<sup>3</sup> – 4A<s...

A = [122212221]\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}, then A3 – 4A2 – 6A is equal to –

A

0

B

A

C

– A

D

1

Answer

– A

Explanation

Solution

A2 = [122212221]\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} [122212221]\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} = [988898889]\begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}

A3 = [122212221]\left[ \begin{array} { l l l } 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{array} \right] [988898889]\begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}= [414242424142424241]\begin{bmatrix} 41 & 42 & 42 \\ 42 & 41 & 42 \\ 42 & 42 & 41 \end{bmatrix}

A3 – 4A2 – 6A = [414242424142424241]\begin{bmatrix} 41 & 42 & 42 \\ 42 & 41 & 42 \\ 42 & 42 & 41 \end{bmatrix}[363232323632323236]\begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36 \end{bmatrix}

[612121261212126]–\begin{bmatrix} 6 & 12 & 12 \\ 12 & 6 & 12 \\ 12 & 12 & 6 \end{bmatrix} ̃ [122212221]–\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} = – A