Solveeit Logo

Question

Question: A bead A can slide freely along a smooth rod bent in the form of a half circle of Radius R. The syst...

A bead A can slide freely along a smooth rod bent in the form of a half circle of Radius R. The system is set in rotation with a constant angular velocity ω about a vertical axis OO'. Find the angle θ corresponding to steady position of the bead.

A

cos-1 (Rω2 g)\left( \frac { \mathrm { R } \omega ^ { 2 } } { \mathrm {~g} } \right)

B

cos-1 (gRω2)\left( \frac { g } { R \omega ^ { 2 } } \right)

C

sin-1 (gRω2)\left( \frac { g } { R \omega ^ { 2 } } \right)

D

cos-1 (Rω2 g)\left( \frac { \mathrm { R } \omega ^ { 2 } } { \mathrm {~g} } \right)

Answer

cos-1 (gRω2)\left( \frac { g } { R \omega ^ { 2 } } \right)

Explanation

Solution

force acting along the tangent to the radius r = R sin θ.

mg sin θ - mr ω2 cos θ = 0

or mg sin [1rω2 gcosθ]\left[ 1 - \frac { \mathrm { r } \omega ^ { 2 } } { \mathrm {~g} } \cos \theta \right] = 0 or θ = cos-1 (gRω2)\left( \frac { g } { R \omega ^ { 2 } } \right)