Solveeit Logo

Question

Physics Question on Magnetic Field

A bar magnet placed in a uniform magnetic field making an angle θ\theta with the field experiences a torque. If the angle made by the magnet with the field is doubled, the torque experienced by the magnet increases by 41.4%41.4\%. The initial angle made by the magnet with the magnetic field is

A

6060^{\circ}

B

3030^{\circ}

C

9090^{\circ}

D

4545^{\circ}

Answer

4545^{\circ}

Explanation

Solution

As we know, torque in a magnetic field,
τ=MBsinθ\tau =M B\, \sin \,\theta
if θ=θ1, \theta=\theta_{1},
then τ1=MBsinθ1\tau_{1}=M B\, \sin\, \theta_{1} \dots(i)
Similarly, if θ=θ2\theta=\theta_{2} then
τ2=MBsinθ2=MBsin2θ1\tau_{2}=M B\, \sin\, \theta_{2}=M B\, \sin \,2 \theta_{1}
(\left(\because\right. Given, θ2=2θ1)\left.\theta_{2}=2 \theta_{1}\right)
Given τ2=τ1+τ1×41.4100\therefore \tau_{2}=\tau_{1}+\tau_{1} \times \frac{41.4}{100}
=1.414τ1=2τ1=1.414 \tau_{1}=\sqrt{2} \tau_{1}
2τ1=MBsin2θ1\Rightarrow \sqrt{2} \tau_{1}=M B\, \sin \,2 \theta_{1} \dots(ii)
From Eqs. (i) and (ii), we get
12=sinθ1sin2θ1\frac{1}{\sqrt{2}}=\frac{\sin\, \theta_{1}}{\sin \,2 \theta_{1}}
sin2θ1=2sinθ1\Rightarrow \sin \,2 \theta_{1}=\sqrt{2} \sin\, \theta_{1} \dots(iii)
As we know that sin2θ=2sinθcosθ\sin \,2 \theta=2 \,\sin \,\theta \,\cos\, \theta
Hence, 2sinθ1cosθ1=2sinθ12 \,\sin \,\theta_{1} \,\cos \,\theta_{1}=\sqrt{2} \sin \,\theta_{1}
2cosθ=22 \,\cos \,\theta=\sqrt{2}
cosθ=12\Rightarrow \cos\, \theta=\frac{1}{\sqrt{2}}
θ=45\Rightarrow \theta=45^{\circ}