Solveeit Logo

Question

Question: A bar magnet \[20\,{\text{cm}}\] in length is placed with its south pole towards geographic north. T...

A bar magnet 20cm20\,{\text{cm}} in length is placed with its south pole towards geographic north. The neutral points are situated at a distance of 40cm40\,{\text{cm}} from the centre of the magnet. If horizontal component of earth’s field 3.2×105T3.2 \times {10^{ - 5\,}}\,{\text{T}}, then pole strength of magnet is:
A. 5Am5\,{\text{Am}}
B. 10Am10\,{\text{Am}}
C. 45Am45\,{\text{Am}}
D. 20Am20\,{\text{Am}}

Explanation

Solution

Use the formula for the magnetic field of a bar magnet at an axial point and the formula for the magnetic moment of the magnet in terms of pole strength of the magnet.

Formula used:
The formula for the magnetic field BB of a bar magnet at an axial point is
B=μ04π2Md(d2l2)2B = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2Md}}{{{{\left( {{d^2} - {l^2}} \right)}^2}}} …… (1)
Here, μ0{\mu _0} is absolute permeability of free space, MM is the magnetic moment of the magnet, dd is the distance between the centre of the magnet and the neutral point and ll is the half length of the magnet.
The magnetic moment MM of the magnet is given by
M=m(2l)M = m\left( {2l} \right) …… (2)
Here, mm is the pole strength of the magnet and 2l2l is the length of the magnet.

Complete step by step answer:
The length of the bar magenta is 20cm20\,{\text{cm}}.
2l=20cm2l = 20\,{\text{cm}}
l=10cm\Rightarrow l = 10\,{\text{cm}}
The neutral points are situated at a distance of 40cm40\,{\text{cm}} from the centre of the magnet.
d=40cmd = 40\,{\text{cm}}
The horizontal component of earth’s field is 3.2×105T3.2 \times {10^{ - 5\,}}\,{\text{T}}.
BH=3.2×105T{B_H} = 3.2 \times {10^{ - 5\,}}\,{\text{T}}
Rewrite equation (1) for the horizontal magnetic field of the Earth for given the bar magnet.
BH=μ04π2Md(d2l2){B_H} = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{2Md}}{{\left( {{d^2} - {l^2}} \right)}}
Rearrange the above equation for MM.
M=4π2μ0d(d2l2)2BHM = \dfrac{{4\pi }}{{2{\mu _0}d}}{\left( {{d^2} - {l^2}} \right)^2}{B_H}
Substitute 107H/m{10^{ - 7}}\,{\text{H/m}} for μ04π\dfrac{{{\mu _0}}}{{4\pi }}, 40cm40\,{\text{cm}} for dd, 10cm10\,{\text{cm}} for ll and 3.2×105T3.2 \times {10^{ - 5\,}}\,{\text{T}} for BH{B_H} in the above equation.
M=12(107H/m)(40cm)[(40cm)2(10cm)2]2(3.2×105T)M = \dfrac{1}{{2\left( {{{10}^{ - 7}}\,{\text{H/m}}} \right)\left( {40\,{\text{cm}}} \right)}}{\left[ {{{\left( {40\,{\text{cm}}} \right)}^2} - {{\left( {10\,{\text{cm}}} \right)}^2}} \right]^2}\left( {3.2 \times {{10}^{ - 5\,}}\,{\text{T}}} \right)
M=12(107H/m)[(40cm)(102m1cm)][[(40cm)(102m1cm)]2[(10cm)(102m1cm)]2]2(3.2×105T)\Rightarrow M = \dfrac{1}{{2\left( {{{10}^{ - 7}}\,{\text{H/m}}} \right)\left[ {\left( {40\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)} \right]}}{\left[ {{{\left[ {\left( {40\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)} \right]}^2} - {{\left[ {\left( {10\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)} \right]}^2}} \right]^2}\left( {3.2 \times {{10}^{ - 5\,}}\,{\text{T}}} \right)
M=9Am2\Rightarrow M = 9\,{\text{A}} \cdot {{\text{m}}^2}
Hence, the magnetic moment of the magnet is 9Am29\,{\text{A}} \cdot {{\text{m}}^2}.
Determine the pole strength of the magnet.
Rearrange equation (2) for the pole strength of the magnet.
m=M2lm = \dfrac{M}{{2l}}
Substitute 9Am29\,{\text{A}} \cdot {{\text{m}}^2} for MM and 20cm20\,{\text{cm}} for 2l2l in the above equation.
m=9Am220cmm = \dfrac{{9\,{\text{A}} \cdot {{\text{m}}^2}}}{{20\,{\text{cm}}}}
m=9Am2(20cm)(102m1cm)\Rightarrow m = \dfrac{{9\,{\text{A}} \cdot {{\text{m}}^2}}}{{\left( {20\,{\text{cm}}} \right)\left( {\dfrac{{{{10}^{ - 2}}\,{\text{m}}}}{{1\,{\text{cm}}\,}}} \right)}}
m=45Am\Rightarrow m = 45\,{\text{A}} \cdot {\text{m}}
Therefore, the pole strength of the pole is 45Am45\,{\text{A}} \cdot {\text{m}}.

So, the correct answer is “Option C”.

Note:
Convert the units of the length of the magnet and the distance of the centre of magnet from the neutral point in the SI system of units.
The magnetic moment of the magnet in terms of pole strength of the magnet.