Solveeit Logo

Question

Question: A bank of overhead arc lamps can produce a light intensity of \[2500\,{\text{W}} \cdot {{\text{m}}^{...

A bank of overhead arc lamps can produce a light intensity of 2500Wm - 22500\,{\text{W}} \cdot {{\text{m}}^{{\text{ - 2}}}} in the 25ft25\,{\text{ft}} space simulator facility at NASA. Find the average momentum density of a total absorbing surface.
A.8.33×106 kgm2s - 18.33 \times {10^{ - 6}}{\text{ kg}} \cdot {{\text{m}}^{ - 2}} \cdot {{\text{s}}^{{\text{ - 1}}}}
B.8.33×1014 kgm2s - 18.33 \times {10^{ - 14}}{\text{ kg}} \cdot {{\text{m}}^{ - 2}} \cdot {{\text{s}}^{{\text{ - 1}}}}
C.2.78 kgm2s - 12.78{\text{ kg}} \cdot {{\text{m}}^{ - 2}} \cdot {{\text{s}}^{{\text{ - 1}}}}
D.2.78×1014 kgm2s - 12.78 \times {10^{ - 14}}{\text{ kg}} \cdot {{\text{m}}^{ - 2}} \cdot {{\text{s}}^{{\text{ - 1}}}}

Explanation

Solution

Use the equation for the average momentum density of a totally absorbing surface. This equation gives the relation between the average momentum density of a totally absorbing surface, intensity of the light and the speed of the light.
Formula used:
The average momentum density of a totally absorbing surface is given by
pavg=Ic2{p_{avg}} = \dfrac{I}{{{c^2}}} …… (1)
Here, pavg{p_{avg}} is the average momentum density of the totally absorbing surface, II is the intensity of the light and cc is the speed of the light.

Complete step by step answer:
A bank of overhead arc lamps can produce a light intensity of 2500Wm - 22500\,{\text{W}} \cdot {{\text{m}}^{{\text{ - 2}}}} in the 25ft25\,{\text{ft}} space simulator facility at NASA.
Calculate the average momentum density of the totally absorbing surface.
Substitute 2500Wm - 22500\,{\text{W}} \cdot {{\text{m}}^{{\text{ - 2}}}} for II and 3×108m/s3 \times {10^8}\,{\text{m/s}} for cc in equation (1).
pavg=2500Wm - 2(3×108m/s)2{p_{avg}} = \dfrac{{2500\,{\text{W}} \cdot {{\text{m}}^{{\text{ - 2}}}}}}{{{{\left( {3 \times {{10}^8}\,{\text{m/s}}} \right)}^2}}}
pavg=2500Wm - 29×1016m2/s2\Rightarrow {p_{avg}} = \dfrac{{2500\,{\text{W}} \cdot {{\text{m}}^{{\text{ - 2}}}}}}{{9 \times {{10}^{16}}\,{{\text{m}}^2}{\text{/}}{{\text{s}}^2}}}
pavg=277.7×1016m2/s2\Rightarrow {p_{avg}} = 277.7 \times {10^{ - 16}}\,{{\text{m}}^2}{\text{/}}{{\text{s}}^2}
pavg=2.78×1014kgm2s1\Rightarrow {p_{avg}} = 2.78 \times {10^{ - 14}}\,{\text{kg}} \cdot {{\text{m}}^{ - 2}} \cdot {{\text{s}}^{ - 1}}
Therefore, the average momentum density of a totally absorbing surface is 2.78×1014kgm2s12.78 \times {10^{ - 14}}\,{\text{kg}} \cdot {{\text{m}}^{ - 2}} \cdot {{\text{s}}^{ - 1}}.

So, the correct answer is “Option D”.

Additional Information:
The average momentum density is the momentum per unit volume.
The average momentum density of a totally reflecting surface is given by
pavg=2Ic2{p_{avg}} = \dfrac{{2I}}{{{c^2}}}
Here, pavg{p_{avg}} is the average momentum density of the totally reflecting surface, II is the intensity of the light and cc is the speed of the light.
The momentum density is also denoted by dpdV\dfrac{{dp}}{{dV}}. Here, dpdp is the infinitesimal change in the momentum.

Note:
The unit of power in simplified form is kgm2s - 3{\text{kg}} \cdot {{\text{m}}^2} \cdot {{\text{s}}^{{\text{ - 3}}}}. Hence, the unit of the average momentum density becomes kgm2s1{\text{kg}} \cdot {{\text{m}}^{ - 2}} \cdot {{\text{s}}^{ - 1}}.
The phenomenon of radiation pressure is caused due to the momentum which is the property of the file and not the moving particles.