Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

A balloon, which always remains spherical, has a variable diameter 32(2x+1)\frac{3}{2}(2x+1) Find the rate of change of its volume with respect to xx

Answer

The volume of a sphere (V)(V) with radius (r)(r) is given by,
v=43πr3v=\frac{4}{3} πr^3
It is given that:
=32(2x+1)=\frac{3}{2}(2x+1)
Diameter
    r=34(2x+1)\implies r=\frac{3}{4}(2x+1)
v=43π(34)3(2x+1)3=916π(2x+1)3∴ v=\frac{4}{3} π(\frac{3}{4})^3(2x+1)^3=\frac{9}{16}π(2x+1)^3
Hence, the rate of change of volume with respect to xx is as
dvdx=916πddx(2x+1)3=916πx3(2x+1)2=278π(2x+1)2.\frac{dv}{dx}=\frac{9}{16}π\frac{d}{dx}(2x+1)^3=\frac{9}{16}πx^3(2x+1)^2=\frac{27}{8}π(2x+1)^2.