Solveeit Logo

Question

Question: A balloon is observed simultaneously from three points \(A,B,C\) on the straight road directly under...

A balloon is observed simultaneously from three points A,B,CA,B,C on the straight road directly under it. The angular elevation at BB is twice that of AA and the angular elevation at CC is thrice that of AA. If the distance between AA and BB is 200m200m and the distance between BB and CC is 100m100m, find the height of the balloon.
A. 503m50\sqrt 3 m
B. 50m50m
C. 1503150\sqrt 3 mm
D, 1003m100\sqrt 3 m

Explanation

Solution

In this question, we will firstly draw the figure according to the given information. We will locate the points A,B,CA,B,C on the straight line and then try to find out the relations in the angle of elevation with respect to the three given points. We will use the trigonometric functions and then use the distance between the points, we will easily get the height of the balloon.

Complete step-by-step answer:

Given A,B,CA,B,C are the three points on the straight road and a balloon is observed from the three points. The angular elevation at BB is twice that of AA. Let the angle of elevation at AAis θ\theta , then the angle of elevation at BB is 2θ2\theta . Also the angular elevation at CC is thrice that of AA, so it will be 3θ3\theta .
Hence the angle of elevation at A,B,CA,B,C are θ,2θ,3θ\theta ,2\theta ,3\theta .
So, the above is the diagram for this question.
From given information we distance between AA and BB is 200m200m, so
AB=200mAB = 200m (1) - - - - - (1)
Similarly, it is given that distance between BB and CC is 100m100m, so
BC=100mBC = 100m (2) - - - - - (2)
Let distance between CC and DD is xx, that is,
CD=xCD = x (3) - - - - - (3)
Let height of the balloon be ED=h(4)ED = h - - - - - (4)
Now according to the question, we have to find the height of the balloon that is, hh
Now, it is clear from the above figure that height of the balloon is perpendicular for the right-angled triangles EDC, EDB and EDA. Using trigonometric formulas for these right-angled triangles we will get some equations involving hh and by solving these equations we can easily get the value of hh.
Now let’s work according to above procedure-
And firstly, taking triangle EDC,
We can clearly see from the figure that EDCEDC is a right-angled triangle.
We know tanθ=prependicularbase\tan \theta = \dfrac{{{\text{prependicular}}}}{{{\text{base}}}}, now using it for angle 3θ3\theta , we get,
So, tan3θ=perpendicularbase=EDCD\tan 3\theta = \dfrac{{perpendicular}}{{base}} = \dfrac{{ED}}{{CD}}
Using (3) and (4) and substituting values of ED and CDED{\text{ and }}CD, we get,
tan3θ=hx\tan 3\theta = \dfrac{h}{x}
Now simplifying it further we get
x=htan3θx = \dfrac{h}{{\tan 3\theta }}
Using cot3θ=1tan3θ\cot 3\theta = \dfrac{1}{{\tan 3\theta }}, we get
x=hcot3θ(5)x = h\cot 3\theta - - - - - - (5)
Secondly, consider the right-angled triangle EDBEDB and again using, tanθ=perpendicularbase\tan \theta = \dfrac{{perpendicular}}{{base}} for angle 2θ2\theta , we get
tan2θ=EDBD\tan 2\theta = \dfrac{{ED}}{{BD}}
Now using (2) to substitute value of ED and using figure we can say BD=BD+CDBD = BD + CD, we get,
tan2θ=hBC+CD BC+CD=htan2θ  \tan 2\theta = \dfrac{h}{{BC + CD}} \\\ BC + CD = \dfrac{h}{{\tan 2\theta }} \\\
Now we know that, 1tanθ=cotθ\dfrac{1}{{\tan \theta }} = \cot \theta , we get,
BC+CD=hcot2θBC + CD = h\cot 2\theta
Using (2) and (3) and substituting BC=100mBC = 100m and CD=xCD = x, we get,
100+x=hcot2θ(6)100 + x = h\cot 2\theta - - - - (6)
Now taking the triangle EDAEDA right-angled at D,
Again using, tanθ=perpendicularbase\tan \theta = \dfrac{{perpendicular}}{{base}}
tanθ=EDAD\tan \theta = \dfrac{{ED}}{{AD}}
Now using figure, we can directly see AD=AB+BC+CDAD = AB + BC + CD and using (2) to substitute value of ED, we get
tanθ=hAB+BC+CD\tan \theta = \dfrac{h}{{AB + BC + CD}}
Now using (1), (2) and (3) to substitute values of AB, BC and CD, we get
tanθ=h200+100+x=h300+x tanθ=h300+x  \tan \theta = \dfrac{h}{{200 + 100 + x}} = \dfrac{h}{{300 + x}} \\\ \Rightarrow \tan \theta = \dfrac{h}{{300 + x}} \\\
Now further solving it, we get
300+x=htanθ300 + x = \dfrac{h}{{\tan \theta }}
Now again, 1tanθ=cotθ\dfrac{1}{{\tan \theta }} = \cot \theta , we get,
300+x=hcotθ(7)300 + x = h\cot \theta - - - - - (7)
Now subtracting equation (5) from (6), we get
100+xx=hcot2θhcot3θ100 + x - x = h\cot 2\theta - h\cot 3\theta
100=h(cot2θcot3θ)(8)100 = h\left( {\cot 2\theta - \cot 3\theta } \right) - - - - - (8)
Now subtracting equation (6) from (7), we get
200=h(cotθcot2θ)(9)200 = h\left( {\cot \theta - \cot 2\theta } \right) - - - - - (9)
Now dividing equation (8) by (9),
100200=h(cot2θcot3θ)h(cotθcot2θ)\dfrac{{100}}{{200}} = \dfrac{{h\left( {\cot 2\theta - \cot 3\theta } \right)}}{{h\left( {\cot \theta - \cot 2\theta } \right)}}
Now hh is cancelled from numerator and denominator, we get
12=(cot2θcot3θ)(cotθcot2θ)\dfrac{1}{2} = \dfrac{{\left( {\cot 2\theta - \cot 3\theta } \right)}}{{\left( {\cot \theta - \cot 2\theta } \right)}}
Now using, cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }} for cotθ,cot2θ and cot3θ\cot \theta ,\cot 2\theta {\text{ and }}\cot 3\theta , we get,
12=cos2θsin2θcos3θsin3θcosθsinθcos3θsin3θ\dfrac{1}{2} = \dfrac{{\dfrac{{\cos 2\theta }}{{\sin 2\theta }} - \dfrac{{\cos 3\theta }}{{\sin 3\theta }}}}{{\dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{{\cos 3\theta }}{{\sin 3\theta }}}}
\dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{{\cos 3\theta }}{{\sin 3\theta }} = 2\left\\{ {\dfrac{{\cos 2\theta }}{{\sin 2\theta }} - \dfrac{{\cos 3\theta }}{{\sin 3\theta }}} \right\\}
Now taking L.C.M., we get,
sin2θcosθsinθcos2θsinθsin2θ=2(sin3θcos2θsin2θcos3θ)sin2θsin3θ\dfrac{{\sin 2\theta \cos \theta - \sin \theta \cos 2\theta }}{{\sin \theta \sin 2\theta }} = \dfrac{{2(\sin 3\theta \cos 2\theta - \sin 2\theta \cos 3\theta )}}{{\sin 2\theta \sin 3\theta }}
Now cancelling 1sin2θ\dfrac{1}{{\sin 2\theta }} from both sides, we get
sin2θcosθsinθcos2θsinθ=2(sin3θcos2θsin2θcos3θ)sin3θ\dfrac{{\sin 2\theta \cos \theta - \sin \theta \cos 2\theta }}{{\sin \theta }} = \dfrac{{2(\sin 3\theta \cos 2\theta - \sin 2\theta \cos 3\theta )}}{{\sin 3\theta }}
Now using, sinAcosBsinBcosA=sin(AB)\sin A\cos B - \sin B\cos A = \sin (A - B), where for L.H.S A=2θ and B=θA = 2\theta {\text{ and }}B = \theta and for R.H.S A=3θ and B=2θA = 3\theta {\text{ and }}B = 2\theta , we get,
sin(2θθ)sinθ=2sin(3θ2θ)sin3θ\dfrac{{\sin (2\theta - \theta )}}{{\sin \theta }} = \dfrac{{2\sin (3\theta - 2\theta )}}{{\sin 3\theta }}
sinθsinθ=2sinθsin3θ\dfrac{{\sin \theta }}{{\sin \theta }} = \dfrac{{2\sin \theta }}{{\sin 3\theta }}
1=2sinθsin3θ1 = \dfrac{{2\sin \theta }}{{\sin 3\theta }}
Now solving further, we get,
sin3θsinθ=2\dfrac{{\sin 3\theta }}{{\sin \theta }} = 2
Now using formula,
sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta and substituting value of sin3θ\sin 3\theta , we get
3sinθ4sin3θsinθ=2\dfrac{{3\sin \theta - 4{{\sin }^3}\theta }}{{\sin \theta }} = 2
Now taking sinθ\sin \theta common from numerator, we get,
sinθ(34sin2θ)sinθ=2\dfrac{{\sin \theta (3 - 4{{\sin }^2}\theta )}}{{\sin \theta }} = 2
Now cancelling sin3θ\sin 3\theta from L.H.S, we get
34sin2θ=23 - 4{\sin ^2}\theta = 2
14sin2θ=01 - 4{\sin ^2}\theta = 0
Now further solving we get
sin2θ=14{\sin ^2}\theta = \dfrac{1}{4}
θ=π6\Rightarrow \theta = \dfrac{\pi }{6}
Substituting θ=π6\theta = \dfrac{\pi }{6} in equation (9), 200=h(cotθcot2θ)200 = h\left( {\cot \theta - \cot 2\theta } \right) to get value of hh
So,
200=h(cotπ6cotπ3)200 = h(\cot \dfrac{\pi }{6} - \cot \dfrac{\pi }{3})
Now substituting cotπ6=3\cot \dfrac{\pi }{6} = \sqrt 3 and cotπ3=13\cot \dfrac{\pi }{3} = \dfrac{1}{{\sqrt 3 }}, we get,
200=h(313)200 = h(\sqrt 3 - \dfrac{1}{{\sqrt 3 }})
By solving this above equation, we get,
200(313)=h\dfrac{{200}}{{(\sqrt 3 - \dfrac{1}{{\sqrt 3 }})}} = h
Now solving it further, we get,
h=200(313)=20032 h=1003  \Rightarrow h = \dfrac{{200}}{{\left( {\dfrac{{3 - 1}}{{\sqrt 3 }}} \right)}} = \dfrac{{200\sqrt 3 }}{2} \\\ \Rightarrow h = 100\sqrt 3 \\\
Hence h=1003mh = 100\sqrt 3 m

So, the correct answer is “Option D”.

Note: In the above problem we use the trigonometric function which should involve perpendicular and the base. So we use tanθ\tan \theta . And here we need to find the height and the base from a given right angled triangle. And we should try to understand which trigonometric function we should apply in order to get the desired result.