Solveeit Logo

Question

Question: A ball thrown in air follows a path given byy = \(\frac{x}{\sqrt{3}} - \frac{3g}{8}\)x<sup>2</sup>m,...

A ball thrown in air follows a path given byy = x33g8\frac{x}{\sqrt{3}} - \frac{3g}{8}x2m, where x-axis is taken along the horizontal and y-axis along the vertical. The maximum displacement of the ball along
x-direction for which displacement along y is zero equals to –

A

153\sqrt{3}m

B

(4/153)(4/15\sqrt{3}) m

C

4/3 m

D

Data insufficient

Answer

(4/153)(4/15\sqrt{3}) m

Explanation

Solution

On comparing the given equation with the standard equation of a projectile

y = x tanq – gx22u2cos2θ\frac { \mathrm { gx } ^ { 2 } } { 2 \mathrm { u } ^ { 2 } \cos ^ { 2 } \theta }

q = 30º and u = 4/3 m/s

\ R = u2sin2θg=(4/3)2sin2(30)10=4153 m\frac { u ^ { 2 } \sin 2 \theta } { g } = \frac { ( 4 / 3 ) ^ { 2 } \sin 2 \left( 30 ^ { \circ } \right) } { 10 } = \frac { 4 } { 15 \sqrt { 3 } } \mathrm {~m}