Solveeit Logo

Question

Question: A ball rolls without slipping. The radius of gyration of the ball about an axis passing through its ...

A ball rolls without slipping. The radius of gyration of the ball about an axis passing through its centre of mass is k. If radius of the ball be R, then the fraction of total energy associated with its rotation will be

A
B

k2R2\frac { \mathrm { k } ^ { 2 } } { \mathrm { R } ^ { 2 } }

C

k2k2+R2\frac { \mathrm { k } ^ { 2 } } { \mathrm { k } ^ { 2 } + \mathrm { R } ^ { 2 } }

D
Answer

k2k2+R2\frac { \mathrm { k } ^ { 2 } } { \mathrm { k } ^ { 2 } + \mathrm { R } ^ { 2 } }

Explanation

Solution

Total kinetic energy,

= K.E. of translation + K.E. of rotation

=12Mv2+12Iω2= \frac { 1 } { 2 } \mathrm { Mv } ^ { 2 } + \frac { 1 } { 2 } \mathrm { I } \omega ^ { 2 }

=12Mv2+12Mk2v2R2= \frac { 1 } { 2 } \mathrm { Mv } ^ { 2 } + \frac { 1 } { 2 } \mathrm { Mk } ^ { 2 } \frac { \mathrm { v } ^ { 2 } } { \mathrm { R } ^ { 2 } } (I=Mk2\because \mathrm { I } = \mathrm { Mk } ^ { 2 } and v= ωR\omega R )

=12Mv2(1+k2R2)= \frac { 1 } { 2 } \mathrm { Mv } ^ { 2 } \left( 1 + \frac { \mathrm { k } ^ { 2 } } { \mathrm { R } ^ { 2 } } \right)

=k2R21+k2R2=k2k2+R2= \frac { \frac { \mathrm { k } ^ { 2 } } { \mathrm { R } ^ { 2 } } } { 1 + \frac { \mathrm { k } ^ { 2 } } { \mathrm { R } ^ { 2 } } } = \frac { \mathrm { k } ^ { 2 } } { \mathrm { k } ^ { 2 } + \mathrm { R } ^ { 2 } }