Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A ball rolls without slipping. The radius of gyration of the ball about an axis passing through its centre of mass is K. If radius of the ball be R, then the fraction of total energy associated with its rotational energy will be:

A

K2+R2R2\frac {K^2+R^2}{R^2}

B

K2R2\frac {K^2}{R^2}

C

K2K2+R2\frac {K^2}{K^2+R^2}

D

R2K2+R2\frac {R^2}{K^2+R^2}

Answer

K2K2+R2\frac {K^2}{K^2+R^2}

Explanation

Solution

Moment of Inertia I=mK2I =mK^2
We know that,
v=Rωv=Rω

ω=vRω = \frac vR

Translational Kinetic Energy = 12mv2\frac 12mv^2

Rotational Kinetic Energy = 12Iω2\frac 12Iω^2 = mK2v22R2\frac {mK^2v^2}{2R^2}

Total Energy = Translational Kinetic Energy + Rotational Kinetic Energy

Total Energy = 12mv2\frac 12mv^2+ mK2v22R2\frac {mK^2v^2}{2R^2}

Total Energy = \frac 12mv^2$$(1+\frac {K^2}{R^2})

Required fraction = Rotational Kinetic EnergyTotal Energy \frac {\text {Rotational\ Kinetic\ Energy}}{ \text {Total\ Energy }}

= mK2v22R212mv2(1+K2R2)\frac {\frac {mK^2v^2}{2R^2}}{ \frac12mv^2 (1+\frac {K^2}{R^2})}

= K2R21+K2R2\frac {\frac {K^2}{R^2} }{ 1+\frac {K^2}{R^2}}

= K2K2+R2\frac {K^2}{K^2+R^2}

So, the correct option is (C): K2K2+R2\frac {K^2}{K^2+R^2}