Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A ball rolls without slipping. The radius of gyration of the ball about an axis passing through its center of mass is KK. If radius of the ball be R,R, then the fraction of total energy associated with its rotational energy will be

A

K2K2+R2\frac{K^2}{K^2 +R^2}

B

R2K2+R2\frac{R^2}{K^2 +R^2}

C

K2+R2R2\frac{K^2 +R^2}{R^2}

D

K2R2\frac{K^2}{R^2}

Answer

K2K2+R2\frac{K^2}{K^2 +R^2}

Explanation

Solution

In rolling without slipping, total energy of ball is the sum of its translational and rotational energy.
Kinetic energy of rotation
Krot=12Iω2=12MK2v2R2K_{rot}=\frac{1}{2}I\omega^2=\frac{1}{2}MK^2\frac{v^2}{R^2}
where KK is radius of gyration.
Kinetic energy of translation,
Ktrans=12Mv2K_{\text{trans}}=\frac{1}{2}Mv^2
Thus, total energy
E=Krot+KtransE=K_{rot}+K_{\text{trans}}
=12MK2V2R2+12Mv2=\frac{1}{2}MK^2\frac{V^2}{R^2}+\frac{1}{2}Mv^2
=12Mv2(K62R2+1)=\frac{1}{2}Mv^2\left(\frac{K62}{R^2}+1\right)
=12Mv2R2(K2+R2)=\frac{1}{2}\frac{Mv^2}{R^2}(K^2+R^2)
Hence KrotKtrans=12MK2v2R212Mv2R2(K2+R2)\frac{K_{rot}}{K_{trans}}=\frac{\frac{1}{2}MK^2\frac{v^2}{R^2}}{\frac{1}{2}\frac{Mv^2}{R^2}(K^2+R^2)}
=K2K2+R2=\frac{K^2}{K^2+R^2}